Appendix 4.

Hydrobiology (2016a) *Rum Jungle Impact Assessment - Floodplain Tailings Investigation*. Prepared for the Department of Mines and Energy, Northern Territory Government.

Rum Jungle Impact Assessment

Floodplain Tailings Investigation

March 2016

ABN 26 096 574 659

GST The company is registered for GST

Head Office 27 / 43 Lang Parade

Auchenflower QLD 4066

Registered Office c/- de Blonk Smith and Young Accountants

GPO 119

Brisbane, QLD 4001

Postal Address PO Box 2151

Toowong QLD 4066

Phone61 (07) 3721 0100Fax61 (07) 3721 0151Email Contactinfo@hydrobiology.bizWebsitehttp://www.hydrobiology.biz

© Hydrobiology Pty Ltd 2016

Disclaimer: This document contains confidential information that is intended only for the use by Hydrobiology's Client. It is not for public circulation or publication or to be used by any third party without the express permission of either the Client or Hydrobiology Pty. Ltd. The concepts and information contained in this document are the property of Hydrobiology Pty Ltd. Use or copying of this document in whole or in part without the written permission of Hydrobiology Pty Ltd constitutes an infringement of copyright.

While the findings presented in this report are based on information that Hydrobiology considers reliable unless stated otherwise, the accuracy and completeness of source information cannot be guaranteed. Furthermore, the information compiled in this report addresses the specific needs of the client, so may not address the needs of third parties using this report for their own purposes. Thus, Hydrobiology and its employees accept no liability for any losses or damage for any action taken or not taken on the basis of any part of the contents of this report. Those acting on information provided in this report do so entirely at their own risk.

Rum Jungle Impact Assessment

Floodplain Tailings Investigation

March 2016

Document Control Infor	mation					
Date Printed	10/03/2016					
Project Title	Rum Jungle Ir	npact Assessmer	nt: Floc	odplain T	Γailings Investi	gation
Project Manager	Ben Pearson					
Job Number	15-014-NTG0	1		Repor	t Number	1
Document Title	Rum Jungle Ir	mpact Assessmer	nt: Floc	dplain 7	Γailings Investi	gation
Document File Name	Document Status	Originator(s)		iewed By	Authorised By	Date
15-014- NTG01_R_1_v0- 1_BP_Floodplain Coring	DRAFT	BP	Д	λM		
15-014- NTG01_R_1_v0- 5_BP_Floodplain Coring	DRAFT	BP	F	RS	BP	08/09/2015
15-014- NTG01_R_1_v1-1	FINAL DRAFT	Mark Greally	E	3P	BP	10/03/2016

Distribution				
Document File Name	Description	Issued To	Issued By	Issue Date
15-014- NTG01_R_1_v1-0	Draft Report	Mark Greally	Ben Pearson	08/09/2015
15-014- NTG01_R_1_v1-0 – MG	Reviewed Draft	Ben Pearson	Mark Greally	18/02/2016
15-014- NTG01_R_1_v2-0	Final	Mark Greally Tania Laurencont	Ben Pearson	10/3/2016

EXECUTIVE SUMMARY

BACKGROUND

Hydrobiology was commissioned by the Northern Territory Government (Department of Mines and Energy) to undertake a floodplain coring investigation downstream of the former Rum Jungle mine. The objectives of this study were to:

- Characterise the composition of the historic mine tailings sediments to establish a geochemical fingerprint;
- Undertake a targeted floodplain sediment coring program on the Finniss River Floodplain; and
- Compare the characteristics of floodplain and tailings sediments to determine whether there is evidence of tailings deposition on the floodplain.

METHODS

The floodplain coring component of the project focussed on the area in the vicinity of the White Eagle community and an area where community members had previously expressed concern about the possible presence of tailings. This component involved collecting sediment cores from a total of 30 sites situated along five separate transects intersecting the river, with sites located on either side of the river. Samples were taken at three different depths from each core.

Samples of historic mine tailings from the mine lease area, and samples from control sites were collected from near the surface of either the river channel bed or bank.

All samples were analysed for a suite of 60 elements. A multivariate statistical approach was used to identify differences between sites based on their geochemical composition and to identify whether similarities existed between tailings samples and those deposited on the Finniss River floodplain.

FINDINGS

The statistical analyses identified that floodplain samples were largely similar to each other and very different from the tailings samples. Generally, samples from Transect 4 were more similar to the tailings samples than control samples and those from Transects 2, 3, 5 and 6. The analysis identified a small patch where tailings material may have deposited. This patch was located within 250 m of the left bank at Transect 4. It was located on the low-lying inside bank of a large meander bend, which would be a depositional environment. These findings suggest that there was evidence of some overbank deposition of tailings but that it was restricted to a trace amount in most areas and about 50% (at most) in isolated shallow locations near the Florence Creek junction.

RECOMMENDATIONS

Given there is little evidence of tailings deposits on the floodplain within the study area, we do not consider that any further coring work is required in the study area. Any further investigations should await publication of other tailings impact studies currently in press.

Rum Jungle Impact Assessment

Floodplain Tailings Investigation

TABLE OF CONTENTS

1	Int	rodu	iction	7
	1.1	Pro	ject Background	7
	1.2		lings Background	
	1.3		jectives	
2	Μe	ethod	ls	9
	2.1	Fie	ld	9
	2.1	.1	Timing	g
	2.1	.2	Study Area	9
	2.1	.3	Floodplain Site Selection	
	2.1	.4	Tailings and Control Site Selection	10
	2.1	.5	Floodplain Sampling	10
	2.1	.6	Tailings and Control Sampling	
	2.2	Lab	poratory Analysis	13
	2.3		ta Analysis	
	2.3	.1	Background	13
	2.3	.2	Inclusion of Historical Data (Analysis 1)	14
	2.3	.3	Exclusion of Historical Data (Analysis 2)	14
3	Re	sults		16
	3.1	Inc	lusion of Historical Data (Analysis 1)	16
	3.2	Exc	clusion of Historical Data (Analysis 2)	19
	3.2	1	Characterisation of Tailings 'Fingerprint'	19
	3.2	2	Assessing Floodplain Deposition	19
	3.2	3	Relative Contribution of Tailings	19
4	Di	scuss	sion and Recommendations	2 3
	4.1	Dis	cussion of Results	23
	4.2	Rec	commendations	23
5	Re	feren	ices	24
	ppend		Photographs	
A	ppend	dix 2	QA/QC Documentation	

Metals Results

Appendix 3

TABLES

Table 2-1 Summary of Transect and Site Locations	. 12
Table 3-1 Comparisons between transects; ANOSIM R-statistics (bold) and four mos	ŧ
distinguishing elements identified by SIMPER analysis and their % contributions to	the
difference between transects	
Table 3-2 Elements that typify tailings samples identified by their percent contribution	n
to the similarity between tailings samples	. 20
Table 3-3 Comparisons between transects; ANOSIM R-statistics (bold) and four most	t
distinguishing elements identified by SIMPER analysis and their % contributions to	
difference between transects	. 21
Table 3-4 Relative contribution of tailings to deposition at different depths of two site	es
on Transect 4.	
FIGURES	
Figure 2-1 Study area and site locations	. 11
Figure 3-1 nMDS ordination showing distribution of samples based on similarity of	
elemental composition	
Figure 3-2. Principal Component analysis with eigenvectors representing the influen	
of different elements on the distribution of samples	
Figure 3-3. Relative concentrations of the different elements at the various locations	
sampled on the floodplain. Transects are ordered based on ED from tailings samples	s18
Figure 3-4 nMDS ordination showing distribution of samples based on similarity of	
elemental composition	. 20
Figure 3-5 Principal Component Analysis with eigenvectors representing the influen	ce
Figure 3-5 Principal Component Analysis with eigenvectors representing the influen of different elements on the distribution of samples	

1 INTRODUCTION

1.1 Project Background

Hydrobiology was commissioned by the Northern Territory Government (Department of Mines and Energy) to undertake a floodplain coring investigation downstream of the former Rum Jungle Mine. The project was undertaken following the findings of Hydrobiology (2014; 2015) that suggested that, based on concerns raised by Traditional Owners, floodplain deposition of mine tailings sediments may have occurred in the vicinity of the White Eagle Community. The community is located adjacent to Litchfield Park Road in the middle reaches of the Finniss River, about 40 km downstream from Rum Jungle Mine and 80 km upstream from the mouth.

Due to the fact that the concerns were primarily raised by members of the White Eagle community, an assessment was undertaken that focussed on sites identified by the White Eagle community upstream of the Finniss River Coastal Floodplain Site of Conservation Significance (FRCPSOCS). The need for a more expansive survey could then be evaluated based on the results from the initial assessment.

1.2 Tailings Background

The former Rum Jungle Mine was mined in the 1950s-1970s (Hydrobiology, 2014). By the late 1960s, there had been considerable environmental harm reported in the East Branch of the Finniss River and the Finniss River itself downstream of the former mine. While the greatest source of contaminants exiting the Rum Jungle site was probably from waste rock dumps and heap leach piles (Mudd, 2000), tailings disposal also resulted in considerable contaminant releases.

Tailings were initially (1951-1961) discharged into what a gently sloping area immediately north of the site (termed 'Old Tailings Dam') (Richards *et al.*, 1999). Tailings were unconstrained and solids settled out, with acidic liquors draining into Old Tailings Creek and further downstream. Mudd (2000) reported that tailings were not neutralised prior to disposal in Old Tailings Dam. The tailings settled but were easily eroded and transported downstream (~3000 t/year). The major contaminants in the tailings were Copper (Cu), Manganese (Mn) and Sulphate (SO₄).

In 1961, tailings were redirected to Dyson's Open Cut, with spent liquors only released during floods in the Wet Season. The practice was completely abandoned by 1968 when tailings were again redirected, this time to White's Open Cut (Mudd 2000).

As a result of the above impacts, a major rehabilitation program was initiated in the 1980s which included moving the eroding tailings (and subsoils) to Dysons Open Cut, with overburden placed on top of the tailings to ensure permanent containment. Despite short-term improvements initially, monitoring of landform stability and water/sediment quality has shown that contaminants continued to be transported downstream.

Pidsley (2002) noted that 1993 surveys showed that sediments in the East Branch of the Finniss River and downstream of its confluence with Finniss River contained much higher levels of contaminants (Nickel - Ni, Cu, Zinc - Zn, Cobalt - Co, Uranium - U) than upstream of the confluence. Brazier *et al.* (2005) showed similar patterns, with elevated Aluminium (Al), Mn, Co, Cu, Ni, Zn, Cadmium (Cd), Lead (Pb) and U.

Further, Taylor (2007) found that metal concentrations in sediments of the East Branch were highest in the mine area, but that elevated levels extended to the Finniss River downstream, specifically for arsenic, zinc and chromium in the <62.5 μ m fraction and arsenic and zinc in the bulk fraction in stream bed sediments, and in bank sediments. There were overall negative correlations of sediment metal concentration with distance downstream, but there was not a simple attenuation with distance, with local hydraulic and geomorphic conditions affecting the patterns of sediment deposition. Taylor (2007) noted that these conditions included local channel gradient, cross-sectional channel shape and floodplain gradient.

Hydrobiology (2015), Jeffree *et al.* (2001) and Robertson GeoConsultants Inc (2010) all supported these findings, showing a decline in metal concentrations with distance downstream, although the extent of elevated concentrations downstream from the mine differed depending on the metal, with high sediment concentrations of Cu and Ni detectable in all reaches to just downstream of the Florence Creek confluence, about 40 km downstream of the mine.

1.3 Objectives

Taylor (2007) noted that the storage of contaminants in floodplains was one of the major issues related to historical metal mining as posed a long-term and ongoing risk to the environment. Given the observed transport of tailings sediments downstream, there was a need to identify whether tailing sediments do exist on the floodplain to understand and evaluate their potential impacts on the receiving environment. As such, the objectives of this study were to:

- Characterise the chemical composition of the mine tailings sediments to establish a geochemical fingerprint for the tailings for comparison with floodplain sediments;
- Undertake a targeted floodplain coring program that focused on reaches of the Finniss River in the vicinity of the White Eagle Community land; and
- Compare the geochemical characteristics of the floodplain sediments with those collected from the mine area to establish whether tailing sediments were present on the floodplain.

2 METHODS

2.1 Field

2.1.1 Timing

The field survey was undertaken between 25th and 29th May. This period was chosen to ensure the river levels had dropped following the wet season and access tracks across the floodplain and off river waterbodies were dry.

2.1.2 Study Area

Figure 2-1 shows the locations of each sampling site. Appendix 1 contains photographs of the sites. There were three distinct sampling areas (and groups of sampling sites) for this project. These were:

- Tailings Sites These sites were located in and around the mine and definitely included tailings deposits and, therefore, were used to characterise tailingsderived sediment;
- **Control Sites** Those sites located upstream of the mine and did not include tailings;
- **Floodplain Sites** These sites were all located between FRusFC and FR0 on the Finniss River floodplain in close vicinity to the White Eagle Community within Zones 6 and 7 identified in Hydrobiology (2014).

The process by which the locations were selected is discussed below.

2.1.3 Floodplain Site Selection

Five transects were selected in the vicinity of the White Eagle community. Transects were located between the biology sampling sites FRusFC and FR0 (Figure 2-1), as described by Hydrobiology (2015), and were specifically located in areas where deposition was expected to occur (e.g. waterbodies, low-lying areas, floodplain). Transects were selected to enable an adequate description of the floodplain near the White Eagle Community. A summary of the location of each transect relative to White Eagle Community is shown in Table 2-1.

Sampling sites were selected along each transect at about 50 m, 250 m and 500 m from the top of each bank to ensure a standardised sampling effort. Actual distances from the bank varied if a more suitable sampling location was found during the field inspection. For example, if depositional landscapes feature (e.g. dry waterbody) was located 265 m from the river, this location was chosen as the 250 m sample. This resulted in a total of 30 sampling sites. Figure 2-1 shows the location of the sites. The figure also shows the locations of the 'historical' sampling sites used in the Brazier et al. (2005) and Pidsley (2002) studies.

Site names were developed that represented their transect name, position relative to the channel (left or right), distance from channel (50, 250, 500) and sample number (1,

2, 3). Regardless of exact distance from the channel, the clarifiers shown in brackets above were still used to standardise site names. Sample numbers referred to the depth at which the sample was collected, with depth increasing with sample number. As an example, the surface sample taken 250 m to the right of the channel at Transect 4 would have the site name T4_R250_1. A full list of sites is contained in Table 2-1.

2.1.4 Tailings and Control Site Selection

Tailings site sampling locations were selected along Old Tailings Creek within the mine lease area to ensure they included tailings. Near surface bed samples were collected, with their location based on where there appeared to be surficial expression of tailings sediment. Bank sample locations and depths were also selected based on surficial expression of tailings sediment.

Control sampling locations were selected arbitrarily on the Finniss River, the East Branch of the Finniss River and other source tributaries upstream from the influence of the mine. Near surface bed and bank samples were collected. All tailings and control samples are shown in Figure 2-1.

2.1.5 Floodplain Sampling

At each floodplain sampling site, a single core was collected to a maximum depth of 0.75 m. Cores were collected using a hand auger, as the split tube corer was ineffective in the harder clay deposits. Maximum depth varied according to the competency of material at depth. A maximum of three depth sub-samples were collected from each core.

Where visual inspection of the core suggested a possible layer of tailings (noticeable shifts in sediment colour, particularly those with brass-yellow, grey-white), that layer was sampled. Samples were also collected from above and below the assumed tailings layer. If there was nothing in the core profile to suggest that deposition of tailings had occurred, but the core consisted of several sedimentary layers, then samples were taken from the different layers. If the core was homogeneous with regard to sediment, only two samples were collected – one at the top of the core (near surface) and one at the bottom of the core (depth varied).

2.1.6 Tailings and Control Sampling

Tailings and control samples were collected from either the bed or bank of the watercourse. A stainless steel trowel was used to collect the sample. Surficial sediment was removed and a sample was collected from just below the surface.

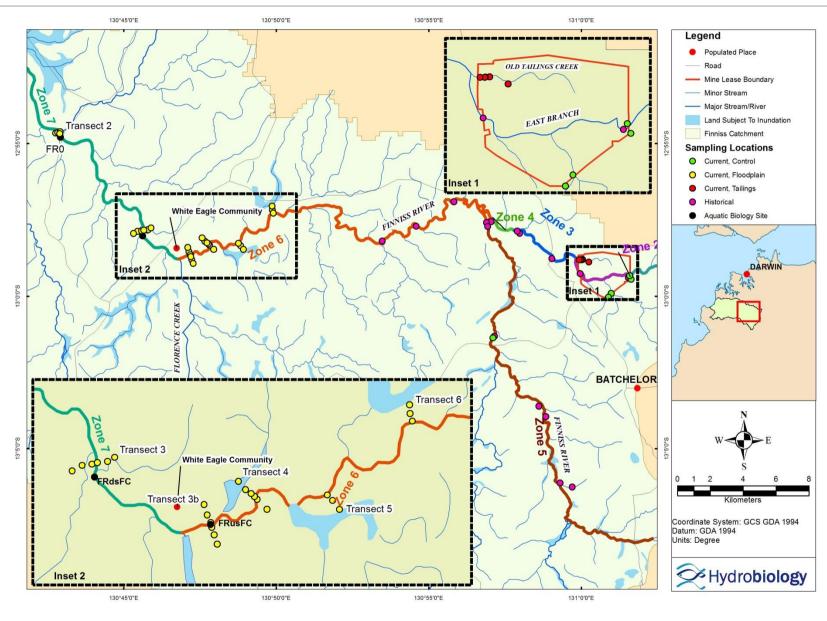


Figure 2-1 Study area and site locations

Table 2-1 Summary of Transect and Site Locations

Transect / Site	Left/Right of Channel	Distance from Bank	Sample IDs	Sample Depths (cm)	Site Type	Latitude (GDA94)	Longitude (GDA94)	Distance from White Eagle Community
	Left	50	T2-L050-1, 2,3	0-10, 30-40, 55-60		-12.91053	130.71379	
Transect 2	Len	250	T2-L250-1, 2, 3	10-15, 35-40, 50-55		-12.91097	130.71267	12.8 km DS
Transect 2	Right	50	T2-R050-1,2	0-10, 30-35		-12.91119	130.71492	12.0 KIII D3
	Kigiit	250	T2-R250-1,2	5-10, 50-55		-12.91024	130.71515	
		50	T3-L050-1,2	0-5, 10-15		-12.96427	130.75972	
	Left	250	T3-L250-1,2,3	0-5, 35-40, 50-55		-12.96455	130.75750	
Transect 3		500	T3-L500-1,2,3	0-5, 20-25, 45-50		-12.96578	130.75528	2.7 km DS
Hansect 5		50	T3-R050-1,2,3	0-10, 25-30, 45-50		-12.96392	130.76092	2.7 KIII D3
	Right	250	T3-R250-1,2,3	0-10, 20-25, 45-50		-12.96363	130.76319	
		500	T3-R500-1,2,3	0-10, 30-35, 45-50		-12.96272	130.76482	
		50	T3b-L050-1,2,3	5-10, 35-40, 55-60		-12.97846	130.78663	
	Left	250	T3b-L250-1,2,3	5-10, 30-35, 50-55		-12.98016	130.78716	
T		500	T3b-L500-1,2,3	15-20, 35-40, 50-55		-12.98223	130.78788	4.41
Transect 3b		50	T3b-R050-1,2,3	10-15, 25-30, 50-55	Electrical	-12.97737	130.78642	1.4 km US
	Right	250	T3b-R250-1,2,3	10-15, 25-30, 45-50	Floodplain	-12.97569	130.78565	
		500	T3b-R500-1,2,3	10-15, 20-25, 50-55		-12.97335	130.78492	
		50	T4-L050-1,2,3	5-10, 25-30, 35-40		-12.97154	130.79622	
	Left	250	T4-L250-1,2,3	5-10, 35-40, 45-50		-12.97219	130.79685	
		500	T4-L500-1,2	10-15, 20-25		-12.97438	130.79902	0.01 110
Transect 4		50	T4-R050-1,2,3	10-15, 30-35, 55-60		-12.97090	130.79546	3.2 km US
	Right	250	T4-R250-1,2,3	10-15, 30-35, 45-50		-12.97000	130.79426	
		500	T4-R500-1,2,3	5-10, 15-20, 35-40		-12.96814	130.79268	1
		50	T5-L050-1,2,3	5-10, 25-30, 55-60		-12.97121	130.81263	
Transect 5	Left	250	T5-L250-1,2,3	5-10, 30-35, 55-60		-12.97243	130.81380	5.5 km US
		500	T5-L500-1,2,3	5-10, 30-35, 55-60		-12.97447	130.81532	
		50	T6-R050-1,2,3	5-10, 25-30, 50-55		-12.95462	130.83171	
Transect 6	Right	250	T6-R250-1,2	0-5, 30-35		-12.95289	130.83119	9.1 km US
		500	T6-R500-1,2	5-10, 15-20		-12.95090	130.83111	1
		N/A	T7-01	Bed Surface		-12.98139	131.00413	
		N/A	T7-02	Bed Surface		-12.98005	131.00065	1
- 0:		N/A	T7-03	Bed Surface		-12.98005	131.00065	
Tailings Site	N/A	N/A	T7-04	Bed Surface	Tailings	-12.98008	130.99986	~40 km US
		N/A	T7-05	Bed Surface		-12.98015	130.99976	1
		N/A	T7-06	Bank Surface		-12.98016	130.99890	1
	1	N/A	T7-07	Bed Surface		-12.99849	131.01632	
		N/A	T7-08	Bed Surface		-12.99070	131.02718	1
Control Site	N/A	N/A	T7-09	Bed Surface	Control	-13.00058	131.01491	~50 km US
		N/A	T7-10	Bed Surface		-12.98884	131.02651	1
		N/A	T7-11	Bed Surface		-13.02290	130.95171	1

2.2 Laboratory Analysis

Sediment samples were analysed at ALS Minerals for 60 elements (including rare earth elements), using a combination of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) analysis. These are standard laboratory methods. QA/QC documentation is provided in Appendix 2, while laboratory results are provided in Appendix 3.

Metals analysed were:

- Alkali Metals Caesium (Cs), Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb);
- Alkaline-Earth Metals Barium (Ba), Beryllium (Be), Calcium (Ca), Magnesium (Mg), Strontium (Sr);
- **Post-Transition Metals** Aluminium (Al), Bismuth (Bi), Gallium (Ga), Indium (In), Lead (Pb), Thallium (Tl), and Tin (Sn);
- **Metalloids** Antimony (Sb), Arsenic (As), Germanium (Ge), and Technetium (Te);
- Other Non-Metals Phosphorus (P), Selenium (Se), and Sulphur (S);
- Transition Metals Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Dysprosium (Dy), Erbium (Er), Europium (Eu), Hafnium (Hf), Iron (Fe), Lawrencium (La), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Rhenium (Re), Scandium (Sc), Silver (Ag), Tantalum (Ta), Titanium (Ti), Tungsten (W), Vanadium (V), Yttrium (Y), Zinc (Zn), and Zirconium (Zr); and
- Rare-Earth Metals (Actinoids, Lanthanoids) Cerium (Ce), Gadolinium (Gd), Holmium (Ho), Lutetium (Lu), Neodymium (Nd), Praseodymium (Pr), Samarium (Sm), Terbium (Tb), Thorium (Th), Thulium (Tm), Uranium (U), and Ytterbium (Yb).

2.3 Data Analysis

2.3.1 Background

Given the long history of erosion of tailings at the mine and its subsequent rehabilitation, it was decided that the datasets contained within Brazier *et al.* (2005) and Pidsley (2002) could be added to the tailings and control sites to assist in identifying a tailings signature. The 'historical' data in Brazier *et al.* (2005) and Pidsley (2002) consisted of analysis results for the following 10 different elements: Ba, Cd, Co, Cu, Fe, Mn, Ni, Pb, U, and Zn.

The current survey replicated those elements with an additional 50 elements (as described above). Two analyses were performed on the datasets, as described below:

1. **Inclusion of Historical Data (Analysis 1)** – How the samples differed between tailings, floodplain and control samples using all samples and therefore limited to the historical suite of elements described in Brazier *et al.* (2005) and Pidsley (2002) and listed above; and

2. Exclusion of Historical Data (Analysis 2) – How the samples differed between tailings, floodplain and control samples using 14 elements that were identified by a Similarity Percentages (SIMPER) analysis as characteristic of the tailings samples collected in the current survey. The SIMPER analysis breaks down the contribution of each element to the observed similarity (or dissimilarity) between samples.

In all cases, data were standardised and depending on subsequent interrogation of the resultant data, subjected to logarithmic transformations to achieve correct relationships between variables and then normalised (Clarke & Gorley, 2006).

2.3.2 Inclusion of Historical Data (Analysis 1)

A Euclidean distance (ED) similarity matrix was used to carry out an Analysis of Similarity (ANOSIM) test to identify differences between tailings, control and floodplain data as well as between samples. SIMPER analysis identified which elements caused the differences between groups by assessing the average percent contribution of individual elements to the dissimilarity between sample groups (floodplain, control, tailings) in a Bray-Curtis dissimilarity matrix. This allows the identification of elements that are likely to be the major contributors to any difference between site groupings detected by methods such as ANOSIM. These analyses were selected as there are no assumptions about the data which allows for a more robust approach.

In order to visualise the relationship between floodplain and tailings samples, non-metric multidimensional scaling (nMDS) and cluster analyses were used which showed visually how related the different samples were, based on the relative concentrations of different elements. As a parallel to the above analyses, a Principal Components Analysis (PCA) was carried out to identify which elements were responsible for differentiating between groups of samples.

The ED between the floodplain samples and the tailings samples was taken to infer the level of influence of the tailings sediments on those floodplain samples, in conjunction with the relative concentration of the suite of elements at those locations.

2.3.3 Exclusion of Historical Data (Analysis 2)

2.3.3.1 Characterisation of Tailings 'Fingerprint'

Using the full suite of elements, the tailings samples were subjected to a SIMPER analysis that identified how similar those samples were to each other using EDs and ranked the elements based on the percentage contributions to the overall similarity. The elements that contributed the largest individual percentages, and collectively accounted for 50% of the total similarity, were taken to typify the tailings samples and their concentrations in floodplain samples were subsequently used to provide an indication of the influence of the tailings sediments downstream.

2.3.3.2 Assessing Floodplain Deposition

An ED similarity matrix was used to carry out two ANOSIM tests to identify differences between tailings, control and floodplain results as well as between samples. A SIMPER analysis identified which elements caused the differences between groups. Similar to Section 2.3.2, an nMDS and cluster analyses were used to visualise the relationship between floodplain and tailings samples and a PCA was used to identify which elements were responsible for the differences.

The ED between the floodplain and tailings samples was taken to infer the level of influence of the tailings sediments on those floodplain samples, in conjunction with the relative concentration of the suite of elements at those locations.

2.3.3.3 Quantification of Tailings Contribution

Those floodplain sites identified as being more similar to the tailings sites underwent a further comparative assessment to determine the relative contribution of control and tailings sediments to floodplain deposition. The assessment used the following equation:

$$[F] = \frac{V_M[M] + V_C[C]}{V_M + V_C}$$

where,

- [F] = Average concentration of all elements identified in Section 3.2.1 as being characteristic of tailings sites (14 elements) within each floodplain sample;
- V_M = Relative volume (%) of tailings sediment contributing to the floodplain sample;
- Vc = Relative volume (%) of control sediment contributing to the floodplain sample;
- [M] = Average concentration of all elements identified in Section 3.2.1 as being characteristic of tailings sites (14 elements) within the tailings samples; and
- [C] = Average concentration of all elements identified in Section 3.2.1 as being characteristic of tailings sites (14 elements) within the control samples.

The equation was used to determine V_M and V_C from known values for [F], [M] and [C]. It assumed that the only two sources of sediment at the sampled floodplain sites were the waterways sampled as part of the tailings and control sampling effort (i.e. $V_M + V_C = 1$). As such, the values obtained were highly conservative, but gave an indication of the volume of tailings deposited at the sites.

3 RESULTS

3.1 Inclusion of Historical Data (Analysis 1)

The nMDS indicated a clear difference between the floodplain and tailings samples (Figure 3-1). The variation in elemental concentration and composition was much greater in the tailings samples than in the floodplain and control samples. Several locations appeared to resemble the tailings samples more closely in Figure 3-1. These were all near surface (< 0.3 m) samples from Transects 4 and were located closer to the river (within 250 m). Figure 3-1 also shows that all samples taken from around 500 m from the river showed little similarity to the tailings samples.

ANOSIM and SIMPER results (Table 3-1) indicated that no significant difference was apparent between the majority of the floodplain samples while the tailings samples and control samples were different from all other samples. Elevated levels of Zn, Cu, Cd and U distinguished the tailings samples from the others.

Eigen vectors (Figure 3-2) indicated that the majority of variation in the data was explained by changes in Zn, Cd, Cu, Co, Pb, U, Ni and Mn concentrations as they increased across the axis separating floodplain samples from controls. Al and Fe also affected the distribution of samples but in an axis perpendicular to that which separated the two groups indicating that concentrations of these elements varied equally among tailings samples and floodplain samples (Figure 3-2.).

In order to assess which floodplain samples were most similar to tailings, the transects were sequenced along the x-axis in Figure 3-3 based on their ED similarities with the tailings samples (the larger the ED value, the more different that transect was from the tailings samples). The percentage concentrations of the different elements at each sample provided an inference of the levels of tailings sediment accreting at those sites. Although Transect 4 appeared to receive the greatest influence from the tailings, the range of ED values is small, from 46 to 54. This again supports the findings of the nMDS (Figure 3-1).

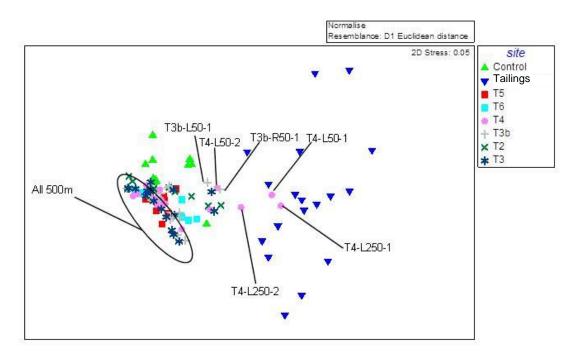


Figure 3-1 nMDS ordination showing distribution of samples based on similarity of elemental composition.

Table 3-1 Comparisons between transects; ANOSIM R-statistics (bold) and four most distinguishing elements identified by SIMPER analysis and their % contributions to the difference between transects.

	0.74						
	Ni 13.86*						
	U 12.09*						
	Zn 12.05*	*left					
Tailings	Co 10.48*	#down					
	0.23	0.61					
	AI 41.35*	Cu 13.25#					
	Fe 12.49*	Zn 12.7#					
	Ni 11.64*	Cd 12.6#					
T6	Cd 9.31*	U 10.91#					
	0.22	0.73	0.30				
	AI 34.56*	Zn 11.69#	Fe 24.37#				
	Mn 13.81#	Cu 11.64#	Al 23.14#				
	Ni 12.77*	U 11.35#	Mn 18.73#				
T5	Cd 11.99#	Cd 11.24#	Pb 8.67#		_		
	0.13	0.62					
	AI 26.25*	Zn 13.11#					
	Ni 14.72*	Cu 11.11#					
	Cd 10.01#	U 10.78#	No	No			
T4	Co 10.63#	Cd 10.59#	difference	difference		•	
	0.32	0.78					
	AI 40.77*	Zn 12.67#					
	Ni 13.21*	Cd 12.17#					
	Cd 9.31#	Cu 10.85#	No	No	No		
T3b	Mn 8.77#	Pb 10.55#	difference	difference	difference		•
		0.67		0.12		0.16	
		Zn 11.72#		Mn 19.14 *		Al 24.63#	
		Fe 11.61#		Al 17.6#		Mn 14.83#	
	No	Pb 11.38#	No	Co 13.26*	No	Co 12.59#	
T2	difference	Ni 11.16#	difference	Cu 12.04*	difference	Cu 10.42*	
	0.25	0.79					
	AI 40.96*	Zn 11.73					
	Ni 11.79*	Cd 11.34					
	Mn 10.19#	Cu 10.73	No No	No	No No	No No	No No
T3	Cd 8.9#	Mn 10.61	difference	difference	difference	difference	difference
	Control	Tailings	Т6	T5	T4	T3b	T2

^{*} indicates higher concentrations to left hand column and # indicates higher concentrations to bottom row.

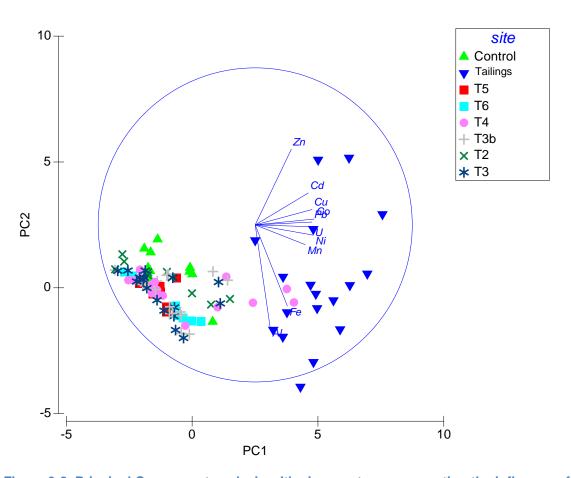


Figure 3-2. Principal Component analysis with eigenvectors representing the influence of different elements on the distribution of samples

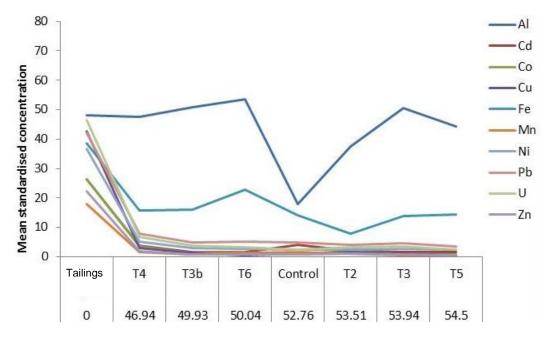


Figure 3-3. Relative concentrations of the different elements at the various locations sampled on the floodplain. Transects are ordered based on ED from tailings samples

3.2 Exclusion of Historical Data (Analysis 2)

3.2.1 Characterisation of Tailings 'Fingerprint'

The SIMPER analysis on only the tailings samples identified 14 elements that were characteristic of the tailings samples (Table 3-2). These 14 elements contributed the first 50% of the mean EDs between the tailings samples and therefore provided a geochemical signature.

3.2.2 Assessing Floodplain Deposition

The nMDS in Figure 3-4 gives a broad indication of the relationship between control, floodplain and tailings samples. There was a clear difference between control samples and tailings samples, with the floodplain samples acting as intermediaries with more similarity to the control samples. As with Analysis 1, samples on Transect 4 were identified as being most similar to the tailings samples. There was little similarity between any sample located at 500 m from the river and tailings samples.

This effect was also reflected in the ANOSIM and SIMPER results listed in Table 3-3. Tailings samples were largely different from all other samples, as were, to a lesser degree, the control samples. Compared with each other, floodplain samples were largely similar. The relationship between control, floodplain and tailings samples was demonstrated by the relationship between different elements (Figure 3-5). The elements Te, S, Cd, Mn, As, Zn and In appeared to drive the separation between tailings and floodplain samples with the remaining elements accounting for variation between samples that were common to both tailings and floodplain samples.

Figure 3-6 shows standardised levels of the 14 elements identified above for tailings, floodplain and control samples. The x-axis sequence of the transects was ordered based on how similar those transects were to the tailings sites based on EDs calculated from their elemental compositions (these were the same EDs used, in part, to position the samples with respect to the multiple axis in the nMDS and PCA plots). Their position along the x-axis is not proportional to their EDs, which were largely similar for the floodplain samples.

3.2.3 Relative Contribution of Tailings

The assessment of relative contribution of tailings was run on the three different depth samples at T4_L050 and T4_L250. These locations were chosen as samples from these locations were shown to be the most similar to the tailings samples. Conservative estimates of the mean contribution of tailings to overall elemental composition are provided in Table 3-4. The results suggested that in the small pocket where similarities with tailings samples were identified, shallow deposits consisted of about 50% tailings, with decreasing contribution with depth. It must be reiterated that these values ignored any other contributing sources, including all other tributaries downstream of the mine shown in Figure 2-1.

Table 3-2 Elements that typify tailings samples identified by their percent contribution to

the similarity between tailings samples.

	Similarity
Element	percentage
Zn	2.97
Mn	2.98
As	3.04
Na	3.08
Th	3.18
In	3.27
Се	3.62
Rb	3.74
Cd	3.84
S	4.28
Те	4.41
K	4.5
Ва	4.67
TI	5.19

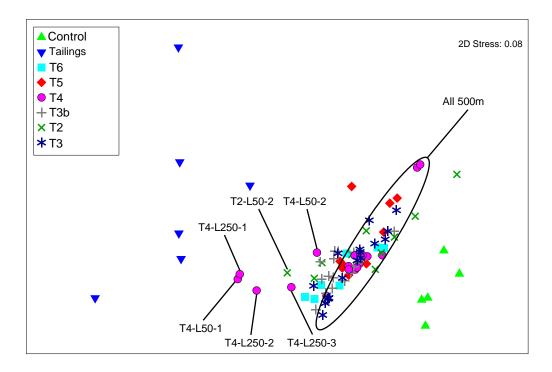


Figure 3-4 nMDS ordination showing distribution of samples based on similarity of elemental composition.

Table 3-3 Comparisons between transects; ANOSIM R-statistics (bold) and four most distinguishing elements identified by SIMPER analysis and their % contributions to the difference between transects.

	0.8	0.86	No No				
T6	Th 11.38*	Cd 11.09# 0.86	No				
	Ce 22.03*	Mn 14.62#	difference				
	Na 15.66#	S 14.58#					
	K 15.23#	Te 12.56#					
T5	In 12.27*	Cd 9.96#					
	0.4	0.8	No	No			
	Ce 21.53*	S 13.97#	difference	difference			
	Na 11.8*	Mn 13.3#					
	In 11.57*	Te 12.98#					
T4	Th 8.97*	Cd 8.8#					
	0.9	0.95	No	0.19	No]	
	Ce 30.21*	S 15.6#	difference	Na 16.12*	difference		
	In 14.39*	Mn 14.99#		K 14.55*			
	Th 14.15*	Te 13.72#		Rb 11.01*			
T3b	Na 12.53*	Cd 10.55#		As 9.1*			
	0.50	0.83	No	No	No	0.41	
	Ce 20.7*	Te 12.64#	difference	difference	difference	TI 12.02#	
	Na 14.84*	Mn 12.44#				Rb 11.86#	
1	K 10.95#	S 11.83#				As 8.64#	
	In 10.66*	A 9.86#				Th 20.41#	
T2	0.0	0.95	No	No	No	No	No
T2	0.8			difference	difference	difference	difference
T2	Ce 27.31*	Mn 14.67#	difference				
T2		Mn 14.67# S 14.12#	difference	dinoronoo			
T2	Ce 27.31*		difference	dinoronoo		J	
T2	Ce 27.31* In 15.52*	S 14.12#	difference	umoromoo			
	Ce 27.31* In 15.52* Na 14.33*	S 14.12# Te 13.55#	difference	T5	T4	T3b	T2

^{*} indicates higher concentrations to left hand column and # indicates higher concentrations to bottom row.

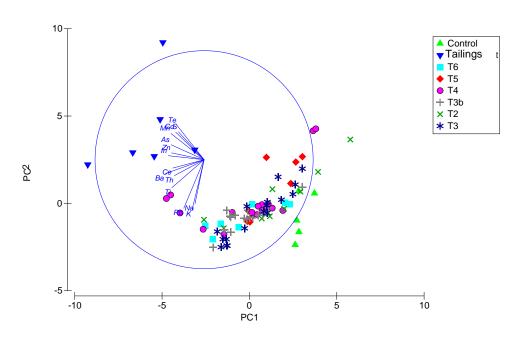


Figure 3-5 Principal Component Analysis with eigenvectors representing the influence of different elements on the distribution of samples

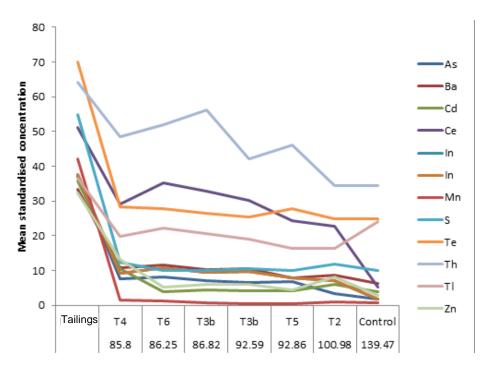


Figure 3-6 Relative concentrations of the different elements at the various locations sampled on the floodplain. Transects are ordered based on ED from tailings samples

Table 3-4 Relative contribution of tailings to deposition at different depths of two sites on Transect 4.

Sample ID	Mean % Contribution of Tailings to Sample
T4_L050_1	49
T4_L050_2	20
T4_L050_3	6
T4_L250_1	53
T4_L250_2	46
T4_L250_3	33

4 DISCUSSION AND RECOMMENDATIONS

4.1 Discussion of Results

Both analyses identified that floodplain samples were largely similar to each other and very different from the tailings samples. Both analyses identified Transect 4 as being more similar to the tailings sediments and is therefore the more likely to have received some tailings sediment than the other locations. Specifically, those samples on Transect 4 located < 250m from the left bank at shallow depths were most similar, but still distinct from the tailings sediment. This section of the river consists of a low-lying, inset floodplain on the inside of a meander bend and would be prone to higher rates of deposition than other sections of the floodplain as it would be wetted more frequently and would generally experience lower velocities.

Analysis 1 demonstrated less difference between the floodplain and tailings samples (smaller ED values) and identified Transect 5 as being the most different from the tailings samples. Analysis 2 demonstrated much more pronounced differences between tailings and floodplain samples (higher EDs) with the control samples being the most different from the tailings samples in terms of elemental composition.

Analysis 1 suggested that Zn, Cd, Cu, Co, Pb, U, Ni, and Mn were the elements that differentiated tailings and floodplain samples. Analysis 2 identified Te, S, Cd, Mn, As, Zn and In as the differentiating elements. Zn, Cd and Mn were common to both analyses.

Based on their similarity with the tailings samples, the sequence of transects from most to least similar using the historical suite of elements was Transect 4, 3b, 6, Control, 2, 3 and 5. Analysis 2 suggested that the sequence from most to least similar was Transect 4, 6, 3b, 3, 5, 2 and Control. These differences between the two datasets are likely due to the fact that the current data provided a more effective characterisation (fingerprint) of the tailings as there were more elements in the characterisation process.

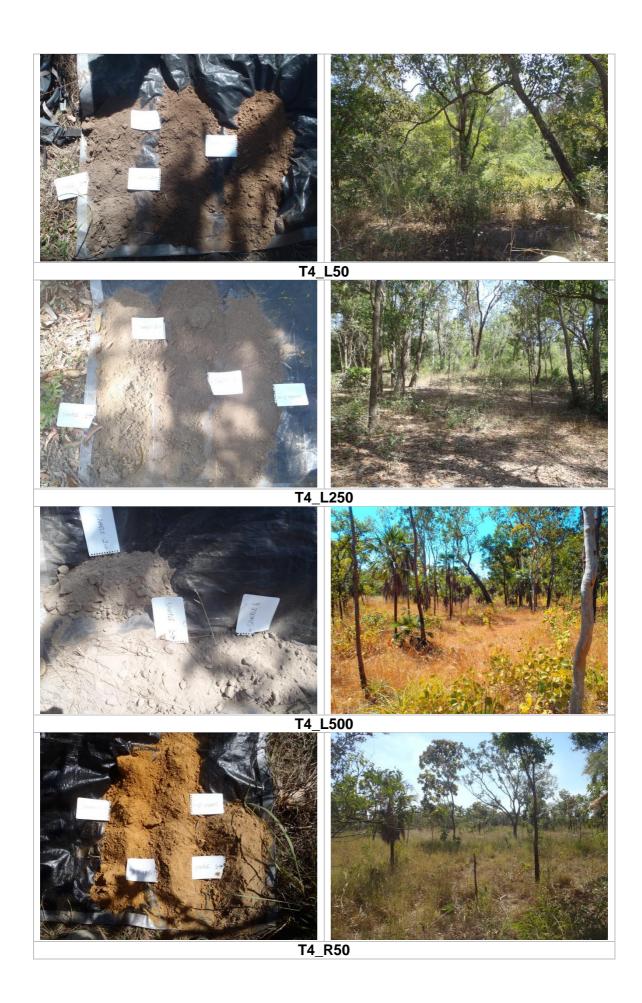
Regardless of which method was used, the results showed there was evidence of some overbank deposition of tailings but that it was restricted to a trace amount in most areas and about 50% (at most) in isolated shallow locations near the Florence Creek junction. This suggests that there are minimal deposits of tailings near the White Eagle Community.

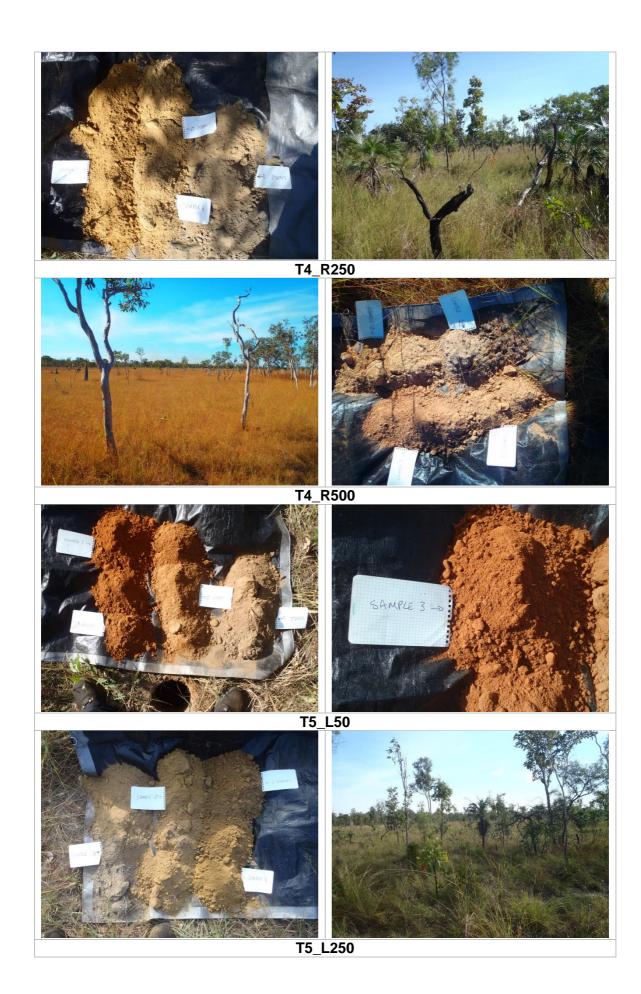
4.2 Recommendations

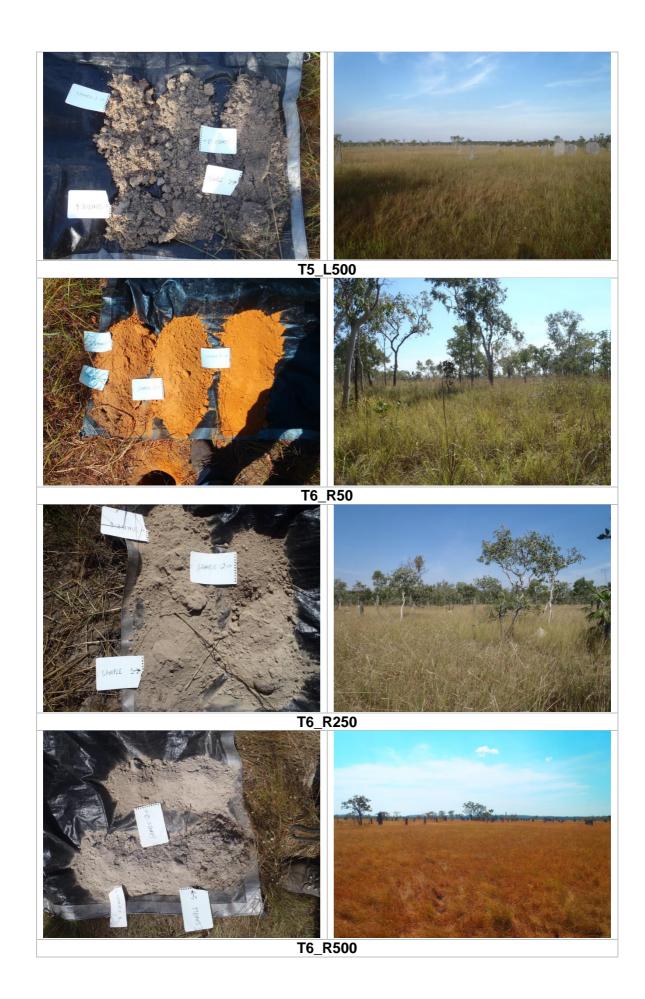

Given this study has shown that there are only isolated deposits of tailings sediments on the floodplain within the study area, we do not consider that any further coring work is required in the study area. Hydrobiology is aware of several previously unpublished tailings impact studies that are in press at the time of writing. These studies focus on the reaches of Finniss River downstream floodplain. A review of these finding, once available, should be undertaken to inform the need for any further study.

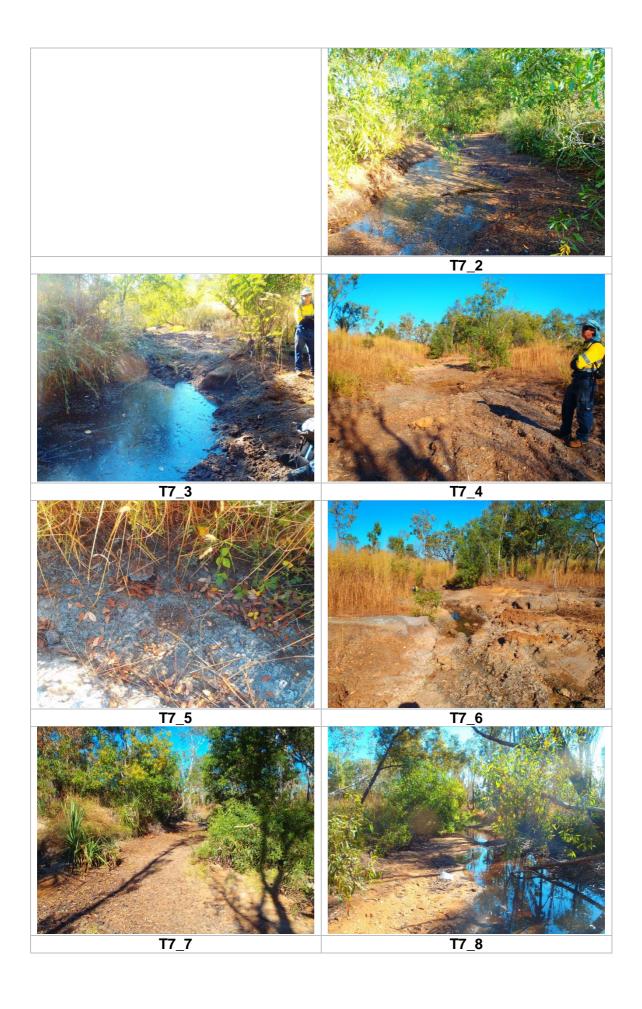
5 REFERENCES

- Brazier, J., Munksgaard, N., & Parry, D. (2005). Sediment and Water quality of the East Branch of the Finniss River, Northern Territory 2003-2005.
- Clarke, K. R., & Gorley, R. N. (2006). *Primer v6: User Manual/Tutorial*. Plymouth: Primer-E.
- Hydrobiology. (2014). *Environmental Values Downstream of the Former Rum Jungle Minesite Final Report*. Brisbane.
- Hydrobiology. (2015). Rum Jungle Impact Assessment: Preliminary Report. Brisbane.
- Jeffree, R. a., Twining, J. R., & Thomson, J. (2001). Recovery of fish communities in the Finniss River, northern Australia, following remediation of the Rum Jungle uranium/copper mine site. *Environmental Science and Technology*, 35(14), 2932–2941. http://doi.org/10.1021/es001719+
- Mudd, G. M. (2000). Remediation of Uranium Mill Tailings Wastes in Australia : A Critical Review, 2, 4–8.
- Pidsley, S. M. (2002). Rum Jungle Rehabilitation Project Monitoring Report 1993-1998. Darwin.
- Richards, R. J., Applegate, R. J., & Ritchie, A. I. . (1999). The Rum Jungle Rehabilitation Project. In D. Mulligan (Ed.), *Environmental Management in the Australian Minerals and Energy Industries: principles and Practices* (pp. 530–551). Sydney: University of New South Wales Press Ltd.
- Robertson GeoConsultants Inc. (2010). HYDROGEOLOGICAL STUDY OF RUM JUNGLE MINE SITE INITIAL REVIEW & DATA GAP ANALYSIS REVO.


APPENDIX 1 PHOTOGRAPHS







APPENDIX 2 QA/QC DOCUMENTATION

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Page: 1
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

Fax: +61 (7) 3243 7218

BR1508353 QC CERTIFICATE

Project: 15-014-NTG01

This report is for 85 Soil samples submitted to our lab in Brisbane, QLD, Australia on 9- JUN-2015.

The following have access to data associated with this certificate:

BEN PEA

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LEV- 01	Waste Disposal Levy
PUL- 21	Pulverize entire sample
TRA- 21	Transfer sample
LOG-22	Sample login - Rcd w/o BarCode

Million and the	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-XRF15b	Various elements in ores by fusion XRF	XRF
ME- GRA05	H2O/LOI by TGA furnace	TGA
ME- MS61r	48 element four acid ICP- MS + REEs	

To:

HYDROBIOLOGY PTY LTD ATTN: BEN PEARSON PO BOX 2050 MILTON QLD 4064

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

**** See Appendix Page for comments regarding this certificate ****

Signature:

Shaun Kenny, Brisbane Laboratory Manager

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 2 - A
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531 QC CERTIFICATE OF ANALYSIS

] [800M 500%	orman in the second construction and the second constructi	SOUTH SERVICE SHOWS SHOWING	- Marie delice	
ME- XRF15b	Mn 0.01		0.09		0.13 0.15 0.38 0.35 0.35	0.08 0.06 0.10	
ME- XRF15b	MgC % 0.01		1.10		7.70 7.45 8.09 1.30 1.32	3.52 3.24 3.54	
ME- XRF15b	La2U3 % 0.01		<0.01 <0.07 0.02		<0.01 <0.01 0.02 <0.01 <0.01 0.02	<0.01 <0.07 0.02	
Sp	K20 % 0.01		3.45 3.28 3.64		2.32 2.45 2.99 2.94 3.27	3.18 3.35	
2b	Ht02 % 0.01		<0.01 <0.01 0.02		<0.01<0.00<0.02<0.01<0.02<0.01	-0.01 0.02	
15b	7.6 0.01		8.50 9.09		9.34 8.99 9.76 8.11 8.05	8.95 8.45 9.18	
15b	Cu % 0.005		0.034 0.026 0.046		0.006 <0.005 0.015 1.050 0.992	<0.005<0.0050.011	
15b	5 % را 0.0		0.02 <0.01 0.04		0.01 0.03 0.01 <0.01 0.02	0.02 <0.01 0.05	
] 25	Co 0.01				0.01 <0.01 0.02 0.01 <0.01	0.01 c0.01	
58	CeO2 % 0.01	STANDARDS	0.01 <0.01 <0.01 <0.01 0.03 0.02		0.01 <0.03 0.03 <0.01 <0.01	0.02 <0.01 0.04	
2p	CaO % 0.01	STAN	0.17 0.20		8.87 8.45 9.17 4.63 4.50	0.78 0.74 0.82	
F1 5b	Bi % 0.01		0.01 <0.03 0.03		-0.01-0.020.01-0.03	<0.01 <0.01 0.02	
15b	BaO % 0.01		0.02 <0.01		0.06 0.04 0.08 0.04 <0.01	0.09	
156	As % 0.01		0.02		<0.01 <0.01 0.02 0.28 0.24 0.32	0.01 <0.01 0.02	
25 25	AI2O3 % 0.01		14,55 0.02 14,20 <0.01 15,40 0.04		13.25 14.40 11.10 11.65	26.7 0.01 25.2 <0.01 27.3 0.02	
Method ME							n ann an Aire
Meti	Ana Un LC		Lower Bound Upper Bound Lower Bound Upper Bound	Lower Bound Upper Bound Lower Bound	Upper Bound Upper Bound Lower Bound Lower Bound Upper Bound	Lower Bound Upper Bound Upper Bound Upper Bound	
	scription		0) 0)	LAT- CS9 AT- CS9 AT- CS9 AT- CS9 AT- CS9 Earget Range - Lower Bound MRGeo08 MRGeo08 Target Range - Lower Bound	UCSDC73303 Target Range - Lower Bound NCSDC73508 Target Range - Lower Bound NCSDC73508 Target Range - Lower Bound Upper Bound	<u> </u>	
	Sample Description		AMISO019 Target Rangs GBM908-10 GBM908-10 Target Rangs	LAT-CS9 LAT-CS9 LAT-CS9 LAT-CS9 LAT-CS9 MRGe008 MRGe008	NCSDC73303 Target Range NCSDC73508 Target Range	Larget Rang OREAS- 45e Target Rang SARM- 45 Target Rane	

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Page: 2 - B
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS

		**************************************	A STATE OF THE STA	
ME-XRF15b Y2O3 % 0.005	<0.005 <0.005 0.015		<0.005 <0.005 <0.010 <0.005 <0.005 <0.005 <0.005 0.010	0.006 <0.005 0.018
ME-XRF15b ME-XRF15b W Y203 % % 0.001 0.005	0.005 0.004 0.008		<0.001 <0.007 0.002 0.002 <0.001 0.004	0.002 <0.001
ME- XRF15b V % 0.01	0.01 <0.01 0.03		0.01 <0.01 0.04 0.01 <0.01	0.02 <0.01 0.05
ME- XRF1 5b TiO2 % 0.01	0.63 0.59 0.67		2.35 2.24 2.50 0.53 0.53	1.84 1.72 1.92
ME-XRF15b ME-XRF15b Sn Sr % % 0.005	0.01 <0.01 0.03		0.11 0.08 0.02 <0.07 <0.02	0.01 <0.03
	1.100 1.035 1.155		<0.005 <0.005 0.012 0.006 <0.005 0.012	<0.005 <0.005 0.011
ME- XRF15b SiO2 % 0.01	53.3 52.0 56.3		44.2 42.8 46.4 47.1 46.0 49.8	49.9 47.6 51.6
ME- XRF15b Sb % 0.005	0.057 0.047 0.067		<0.005 <0.005 0.010 0.063 0.063 0.067	<0.005 <0.005 0.015
ME- XRF15b ME- XRF15b Rb S S % % 0.005 0.001	6.35 6.35 6.79 6.79		 <0.01 <0.01 <0.03 <0.83 <0.83 <0.83 <0.77 <0.09 	0.04 0.03 0.07
	STANDARDS 0.022 0.034		0.005 <0.005 0.010 0.013 <0.005	0.016 <0.005
ME- XRF15b Pb % 0.005	0.057 0.057 0.075		<0.005 <0.005 0.014 2.08 1.910	<0.005<0.005<0.012
ME- XRF1 5b P2O5 % 0.01	0.11 0.09 0.13		0.96 0.87 1.03 0.13 0.11	0.08 0.06 0.10
ME- XRF15b Ni % 0.005	<0.005 <0.005 0.012		0.016 <0.005 0.024 0.006 <0.005	0.008 <0.005 0.018
b ME-XRF15b Nb % 0.005	<0.005 <0.005 0.016		<0.005 0.008 <0.005 <0.005 0.010 0.017 0.008 <0.005 <0.005 <0.005 <0.012 0.010	<0.005 <0.005 0.013
ME- XRF15b Mo % 0.005	<0.005 <0.005 0.010		<0.005 <0.005 <0.010 0.008 <0.008 <0.005	 < 0.005 0.010
Method Analyte Units LOR	Opper Bound Upper Bound	Upper Bound Lower Bound Upper Bound	Upper Bound Lower Bound Upper Bound Upper Bound Upper Bound	puno puno puno
Sample Description	AMISO019 Target Range - Lower Bound GBM908-10 GBM908-10 GBM908-10	LAT-CS9 MACGOOR	nge nge nge	OREAS- 45e Target Range - Lower Bound SARM- 45 Target Range - Lower Bound Upper Bound Upper Bound

3.2 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7218 www.alsglobal.com

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: 2 - C
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

		- Almanom		
 ME-MS61r Cr	mdd 1		136 133 1256 1156 91 162 81 81 83 78	946 880 1080
 ME- MS61r Co	ррт 0.1	٠.	26.7 25.2 23.3 23.3 21.2 19.3 17.7 27.9 87.2	52.4 51.2 62.8
ME-MS61r Ce	0.01		101.0 104.0 99.0 121.0 75.4 75.4 66.7 81.5 73.6 73.6	22.5 21.1 25.9
 ME-MS61r Cd	ppm 0.02		1.65 1.76 1.53 2.18 2.05 2.05 2.05 2.55 18.65 16.70	0.02 <0.02 0.07
 ME-MS61r Ca	0.01		3.49 3.79 3.33 4.10 2.69 2.70 2.35 2.35 2.30 2.30 2.30	0.05 0.04 0.09
 ME- MS6 I r Bi	0.01		1.36 1.16 1.18 0.75 0.68 0.68 0.62 11.50 9.44	0.30 0.24 0.32
ME- MS6 Ir Be	ppm 0.05		1.45 1.27 1.27 1.66 3.24 3.24 3.24 2.94 2.59 2.59	0.55 0.49 0.75
ME-MS61r Ba	10 10		1040 1110 9330 1280 1040 1080 920 750 750 760 980	230 200 300
ME-MS61r As	ppm 0.2	S	57.7 55.1 51.1 62.9 33.3 31.4 29.7 36.7 118.0 107.0	15.8 14.2 17.8
ME-MS61r Al	% 0.01	STANDARDS	6.69 7.12 7.84 6.99 6.99 6.99 7.60 6.64 6.64 6.07	5.61 6.09 7.47
ME-MS61r Ag	ppm 0.01	ST	2.87 2.69 2.69 3.31 4.00 4.00 4.92 18.55 18.55	0.35
ME- GRA05 LOI	0.01		12.70 12.72 12.63 12.89 12.78 12.78 12.78 12.78	
ME- XRF15b Total	% 0.01		103.85	100.40 -20.01 0.02
ME- XRF15b Zr	0.01		0.01 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.007 0.03 100.40 <0.005 <0.017 0.05 0.02
ME- XRF15b Zn	0.005		0.515 0.482 0.543 0.014 <0.005 0.025 4.26 4.26 4.26 4.26 4.48	0.007 <0:005
Method	Units		nd nd nd ind ind ind ind ind	nd nd md
	Sample Description		AMISO019 Target Range - Lower Bound GBM908-10 GBM908-10 Target Range - Lower Bound LAT- CS9 L	OREAS- 45e Target Range - Lower Bound SARM-45 Target Range - Lower Bound Upper Bound

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 2 - D
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

Γ	.,		2075-Da 2007-P	Smiles austra	grand digital curate tende	7
	ME-MS61r Nb ppm 0.1		10.2 10.7 9.5	21.6 20.4 19.0	17.0 15.4 19.0 6.7 6.7 7.6	
	ME- MS61r Na % 0.01		2.03 2.13 1.93. 2.38	1.87 1.91 1.76 2.18	1.75 1.62 2.00 0.06 0.06 0.08	
	ME- MS61r Mo ppm 0.05		63.5 68.8 57.9 70.9	15.65 14.60 13.65 16.75	874 841 1030 2.38 2.69	
	ME-MS61r Mn ppm 5		767 804 775 885	535 540 497 619	493 447 557 516 610	
1	ME- MS61r Mg % 0.01		1.74 1.79 1.99	1.26 1.32 1.17	1.20 1.11 1.38 0.12 0.18	
ı	ME-MS61r N Li ppm 0.2		11.8 11.8 9.8 12.4	34.5 34.4 30.4 37.6	33.9 29.7 36.7 6.7 7.4	
١	ME-MS61r N La ppm 0.5		51.3 51.0 49.0 61.0	36.8 36.0 34.1	36.2 31.0 39.0 10.2 9.4	
١	ME-MS61r N K K % 0.01		2.03 2.08 1.87 2.31	3.01 3.03 2.79 3.43	2.82 2.59 3.19 0.32 0.37	
	ME-MS61r N In ppm 0.005		0.069 0.075 0.064 0.092	0.169 0.164 0.167	1.395 1.320 1.620 0.094 0.114	
ı	ME-MS61r N Hf ppm 0.1	STANDARDS	3.5 3.5 3.5 3.5 3.5	3.1 3.2 3.6 3.6	2.8 3.3 3.1 3.5	
١	ME-MS61r N Ge ppm 0.05	STA	0.23 0.28 0.40	0.20 0.19 <0.05	0.41 0.25 0.49 0.43 1.13	
	ME-MS61r N Ga ppm 0.05		22.1 21.6 18.65 22.9	20.9 19.40 17.50	17.85 16.05 19.75 14.90 18.20	
	ME- MS61r N Fe % 0.01		5.16 5.53 4.98 6.10	3.75 3.82 3.55 4.37	5.04 4.81 5.91 22.5 21.7 26.5	
	ME-MS61r M Cu ppm 0.2		3560 3750 3380 3880	617 602 587 675	8210 7800 8980 758 725 835	
	ME- MS61r M Cs ppm 0.05		3.60 3.70 3.44 4.32	12.10 11.25 11.00 13.60	10.95 1.2.15 1.23 1.08	
	Method Analyte Units LOR					
			Lower Bound Upper Bound Lower Bound Upper Bound	Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound	Lower Bound Upper Bound Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound	
	Sample Description		9 ange - 10 ange -		NCSDC73508 Target Range - Lower Bound OCGeo08 Target Range - Lower Bound OREAS- 45e Target Range - Lower Bound SARM - 45 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound	
	Samp		Target R. GBM908-GBM908-Target R. Target R. LAT- CS9 LAT- CS9	LAT- LAT- LAT- MRG MRG Targ	NCSI Targ OGC Targ SARA Targ	

Fax: +61 (7) 3243 7218 32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 2 - E
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

								ý			5		בר		-
Method Analyte Units Sample Description	ME- MS61r Ni ppm 0.2	ME- MS61r P ppm 10	ME- MS61r Pb ppm 0.5	ME- MS61r Rb ppm 0.1	ME- MS61r Re ppm 0.002	ME- MS61r S % 0.01	ME- MS61r Sb ppm 0.05	ME-MS61r Sc ppm 0.1	ME-MS61r Se ppm 1	ME-MS61r Sn ppm 0.2	ME-MS61r Sr ppm 0.2	ME-MS61r Ta ppm 0.05	ME-MS61r Te ppm 0.05	ME-MS61r Th ppm 0.2	ME- MS61r Ti % 0.005
					ST	STANDARDS	S								
AMISO019 Target Range - Lower Bound GBM908-10 GBM908-10 Target Range - Lower Bound	2230 2200 2030		2020 2040 1860	164.5 177.5 153.0	<0.002 <0.002 <0.002	0.36 0.37 0.33	1.70 1.74	19.1 18.7 17.0	0 0 V	3.3 2.7	280 295 258	0.69 0.80 0.80	80.0 80.09	18.3 17.9 16.4	0.719 0.703 0.591
UAT- CS9 LAT- CS9 LAT	2480	1100	2270	201	90000	0.43	2.01	220 550	4 0	ນ 4 ຍ	296 296	9.0 9.0 9.0 9.0	0,16 0,05	4	0.545
Mingeolo Target Range - Lower Bound Upper Bound	658 1030 622 930 760 1160	1030 930 1160	1060 971 1185	211 173.5 212	0.007 0.006 0.016	0.29	3.89 5.39	12.7 11.1 13.7	- 2 - 4	3.9 3.5 4.7	305 277 339	1.47	0.05 <0.05 0.14	21.4 17.7 22.1	0.526 0.454 0.566
NCSDC73303 Target Range - Lower Bound NCSDC73508 Target Range - Lower Bound OCGeo08 Target Range - Lower Bound ORRAS- 45e Target Range - Lower Bound ORRAS- 45e Target Range - Lower Bound SARM- 45 Target Range - Lower Bound Upper Bound	8640 800 8000 760 9770 950 442 310 500 380	800 760 950 310 300 380	7250 6520 770 18.3 18.3 20.5	192.5 164.5 20.1 20.9 19.0	1.355 1.285 1.576 <0.002 <0.004	2.70 2.51 3.09 0.05 0.05 0.07	27.4 22.8 22.8 31.0 0.90 0.80 1.20	11.1 9.2 11.4 85.3 83.6 102.5	τ ω 7. κ Σ ω	14.3 15.7 1.3 0.9 1.8	246 224 274 15.8 14.:1	1.26 1.19 1.57 0.56 0.43	0.24 0.09 0.31 0.31 0.07 0.07	20.1 16.7 20.9 11.6 11.4	0.437 0.353 0.443 0.501 0.520

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 2 - F
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB BR15083531 QC CERTIFICATE OF ANALYSIS

		**************************************	TO A 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10
,	10.65 10.45 9.83 13.35	8.29 7.69 7.02 9.56	7.99 6.61 9.01 2.60 2.15 2.99
	40.6 40.6 36.2 49.2	32.2 29.9 26.5 36.1	30.3 24.7 33.7 9.6 8.0
	0.56 0.58 0.60	0.45 0.43 0.32 0.46	0.37 0.27 0.39 0.20 0.13 0.21
	1.32	1.01 0.99 0.79 1.09	0.89 0.70 0.98 0.40 0.31
	7.57 8.39 6.49 8.89	5.85 5.60 4.60 6.34	5.37 4.19 5.79 1.96 1.64
	1.70	1.37 1.29 1.12 1.59	1.22 0.99 1.41 0.54 0.67
	3.81 3.26 4.48	2.96 2.90 2.37 3.27	2.57 2.03 2.81 1.18 0.99
	6.71 7.38 7.70 7.32	5.19 4.96 3.99 5.51	4.47 3.65 5.05 1.99 1.69 2.41
	138.5 142.0 117.5 160.5	114.0 108.5 92.2. 126.0	91.9 78.6 107.5 105.0 93.0 127.0
randari	1050 1070 939 1155	805 769 722 886	7270 6500 7950 44 40 53
S	36.4 38.4 35.2 43.2	28.1 26.6 23.8 29.3	25.7 21.1 26.0 7.5 7.4 9.2
	3.1 2.9 4.1	4.7 4.1 5.8	3.95 5.46 1.0 1.0 1.4
	131 123 153	104 107 97 121	81 777 292 292 355
	2.3 2.0 2.0 2.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.2 4.5 2.4 2.4 2.1 2.8
	1.27 1.16 1.00 1.40	1.11 0.98 0.89 1.25	1.64 1.43 1.198 0.14 0.70
nnd	puna	und bund und und	punc punc punc punc punc
MISO019 arget Range - Lower Bo Upper B	BM908-10 BM908-10 arget Range - Lower Bo arget RAT-CS9 AT-CS9 AT-CS9 AT-CS9 AT-CS9 AT-CS9	AT-CS9 arget Range - Lower Bo RGeo08 RRGeo08 arget Range - Lower Bo CSDC73303 arget Range - Lower Bo Upper Bd	NCSDC73508 Target Range - Lower Bound OCGeo08 Target Range - Lower Bound OREAS- 45e Target Range - Lower Bound OREAS- 45e Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound
	STANDARDS	1.27 2.3 131 3.1 36.4 1050 138.5 6.71 3.81 1.70 7.57 1.32 0.56 40.6 1.16 2.0 142 3.2 38.4 1070 142.0 7.38 4.20 183 8.39 1.49 0.58 40.6 1.00 2.0 123 2.9 35.2 939 117.5 5.70 3.26 1.57 6.49 1.14 0.42 36.2 1.40 2.6 153 4.1 43.2 1155 160.5 7.82 4.48 2.19 8.89 1.56 0.60 49.2	1.27 2.3 131 3.1 36.4 1050 138.5 6.71 3.81 1.70 7.57 1.32 0.56 40.6 1.40 2.0 1.42 3.2 3.84 1070 142.0 7.38 4.20 1.83 8.39 1.49 0.58 40.6 49.2 1.40 2.6 1.53 4.48 2.19 8.89 1.55 0.60 4.92 4.92 1.41 0.45 2.92 4.48 2.19 8.89 1.55 0.60 4.92 4.92 4.48

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 2 - G
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

Minerals					QC CERTIFIC	QC CERTIFICATE OF ANALYSIS	BR15083531
Method Analyte Sample Description LOR	ME-MS61r Sm ppm 0.03	ME-MS61r Tb ppm 0.01	ME-MS61r Tm ppm 0.01	ME- MS61r Yb ppm 0.03			
	ann seine in Marian	-			STANDARDS		
AMISO019 Target Range - Lower Bound GBM908-10 GBM908-10 Target Range - Lower Bound LAT-CS9 LAT-CS9 LAT-CS9	7.96 1.12 8.48 1.25 7.02 0.99 9.56 1.37	1.12 1.25 0.99 1.37	0.54 0.58 0.46	3.49 3.76 2.83 5.91			
LAT-CS9 LAT-CS9 LAT-CS9 LAT-CS9 Target Range - Lower Bound MRGeo08 Target Range - Lower Bound Upper Bound NCSDC73303 Target Range - Lower Bound	6.41 0.85 5.96 0.83 5.24 0.67 7.16 0.93	0.85 0.83 0.67	0.42 0.41 0.32 0.46	2.80 2.72 2.13			
NCSDC73508 Target Range - Lower Bound OGGeo08 Target Range - Lower Bound OREAS- 45e Target Range - Lower Bound SARM- 45 Target Range - Lower Bound SARM- 45 Target Range - Lower Bound	6.28 4.89 6.69 2.25 7.91	0.80 0.64 0.90 0.33 0.25	0.36 0.28 0.40 0.18 0.13	2.33 1.83 2.55 1.26 0.38			

Australian Laboratory Services Pty. Ltd.

32 Shand Street
Stafford
Brisbane QLD 4053
Phone: +61 (7) 3243 7222
www.alsglobal.com

7222 Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

0)ect. 13-014-141001

OC CERTIFICATE OF ANALYSIS

Page: 3 - A Total # Pages: 5 (A - G)

Plus Appendix Pages Finalized Date: 7- JUL- 2015

Account: HYDROB

BR15083531

0.01 0.01 0.01 <0.01 <0.01 <0.01 0.02 0.02 ME-XRF15b ME-XRF15b ME-XRF15b <0.01 % 0.0 0.15 0.25 0.22 0.22 0.22 MgO % <0.01 <0.01 0.16 0.25 0.18 <0.01 <0.01 <0.01 La203 <0.01 <0.01 <0.07 <0.01 <0.01 <0.01 0.02 0.02 % 0.0 0.02 1.34 1.34 1.30 ME- XRF15b ME- XRF15b ME- XRF15b <0.07 <0.01 <0.01 1.27 1.27 1.23 % 0.01 0.02 1.38 K20 <0.01 <0.01 <0.01 <0.01 Hf02 % 0.01 <0.01 <0.01 0.02 0.02 <0.01 <0.01 0.02 <0.01 <0.01 1.03 0.99 0.98 1.04 0.99 1.00 0.97 1.02 <0.01 0.02 Fe % 0.03 ME- XRF15b <0.005 <0.005 0.005 <0,005 <0.005 <0.005 0.010 0.010 Cu % 0.005 0.010 0.01 ME- XRF15b <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 ე % ე. . ME- XRF15b ME- XRF15b ME- XRF15b <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 **0.0**2 0.02 %0.01 ပိ **DUPLICATES** 0.02 <0.01 **BLANKS** <0.01 <0.01 <0.01 Ce02 <0.01 <0.01 0.02 0.01 % 0.01 0.02 <0.01 <0.01 0.02 0.02 0.01 0.02 <0.01 <0.01 <0.01 0.02 0.02 CaO %0.01 ME-XRF1Sb ME-XRF1Sb ME-XRF1Sb ME-XRF1Sb <0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.02 0.02 Bi % 0.0 0.02 0.02 <0.01 <0.01 <0.01 0.03 <0.01 %0.01 0.02 0.01 0.02 BaO 0.01 0.01 6.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.01 <0.01 0.02 0,02 As % 0.00 <0.01 12.65 12.70 12.40 AI203 <0.01 12.95 6.82 6.78 6.65 6.95 % 0.0 0.02 arget Range - Lower Bound Method Analyte Units LOR Farget Range - Lower Bound Farget Range - Lower Bound Upper Bound Upper Bound Target Range - Lower Bound Farget Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound Farget Range - Lower Bound Upper Bound Upper Bound **Upper Bound** Sample Description T5-500L-2 T5-250L-1 T4-250L-1 T2-R50-1 T2-R50-2 BLANK BLANK BLANK BLANK DUP PP PP ana

BLANK BLANK

BLANK

BLANK

BLANK

DUP

Australian Laboratory Services Pty. Ltd. 32 Shand Street

Fax: +61 (7) 3243 7218 Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Project: 15-014-NTG01

Plus Appendix Pages Finalized Date: 7- JUL- 2015 Account: HYDROB

Total # Pages: 5 (A - G)

Page: 3 -

<0.001 <0.005 <0.001<0.005<0.001<0.005<0.005 <0.001 <0.005 ME- XRF15b ME- XRF15b 0.010 <0.005 0.010 <0.005 0.010 0.005 Y203 BR15083531 0.002 0.001 <0.001 0.002 0.002 w % 0.001 0.002 <0.01 <0.01 <0.01 ME- XRF15b <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 0.02 % 0.0 QC CERTIFICATE OF ANALYSIS <0.01 0.35 0.75 ME- XRF15b 0.39 <0.01 <0.01 0.02 0.77 Ti02 0.80 0.37 % 0.0 ME- XRF15b <0.005 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.02 0.02 <0.01 Sr % 0.01 ME- XRF15b <0.005 <0.005 <0.005 <0.005 <0.005 Sn % 0.005 0.010 0.010 0.010 83.7 83.7 82.0 77.0 ME-XRF15b <0.01 85.4 99.0 99.1 78.6 78.6 80.2 SiO2 %0.0 0.02 <0.005 <0.005 <0.005 ME- XRF15b <0.005 <0.005 <0.005 <0.005 0.010 Sb % 0.005 0.010 0.010 0.02 0.02 <0.01 <0.005 <0.005 <0.01 ME- XRF15b ME- XRF15b <0.01 0.03 0.02 <0.07 <0.01 <0.01 s % 0.01 **DUPLICATES** <0.005 <0.005 <0.005 <0.005 **BLANKS** <0.005 0.011 % 0.005 0.011 0.009 0.010 0.010 0.017 Rb 0.010 ME- XRF15b <0.005 <0.005 0.010 0.010 <0.005 Pb % 0.005 <0.005 0.04 0.04 0.03 0.05 <0.01 <0.01 0.02 ME- XRF15b <0.01 <0.01 P205 0.02 0.03 %0.0 <0.005 <0.005 0.010 ME-XRF15b <0.005 <0.005 <0.005 <0.005 <0.005 0.010 <0.005 Ni 0.005 0.010 <0.005 ME-XRF15b 0.010 <0.005 <0.005 <0.005 <0.005 <0.005 % 0.005 0.010 0.010 å ME- XRF15b <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010 0.010 Mo % 0.005 0.010 Method Analyte Units LOR Farget Range - Lower Bound Target Range - Lower Bound Farget Range - Lower Bound Farget Range - Lower Bound Upper Bound Target Range - Lower Bound Upper Bound arget Range - Lower Bound Upper Bound Upper Bound Farget Range - Lower Bound **Upper Bound** Upper Bound Upper Bound Dinerals Sample Description T5-500L-2 T4-250L-1 T5-250L-1

T2-R50-1

DUP

DUP

T2-R50-2

DUP

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 Fav www.alsglobal.com

22 Fax: +61 (7) 3243 7218

Project: 1

Project: 15- 014- NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: 3 - C
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

	SS 653	\$555 \$500E	0502302500	isis rec		2000 X-200
ME-MS61r Cr ppm 1	∇ ∇ ∇ ~	35 32 38		21 22 19 24	:	61 62 57 66
ME- MS61r Co ppm 0.1	60.1 60.1 60.1 60.1 0.2	9.3 9.6 8.9 10.0		12.2 12.3 11.5 13.0		125.0 126.0 119.0 132.0
ME-MS61r Ce ppm 0.03	<0.01 <0.01 0.01 <0.07 <0.02	55.8 59.9 54.9 60.8		52.7 53.9 50.6 56.0		104.5 104.0 99.0 109.5
ME- MS61r Cd ppm 0.02	<0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 0.04		0.03 0.03 <0.02 0.04		0.12 0.10 0.09 0.14
ME- MS61r Ca % 0.01	<0.01 <0.01 <0.01 <0.01 <0.02	0.01 0.01 <0.02		0.01 0.01 <0.01 0.02		0.08 0.09 0.07 0.10
ME- MS61r Bi ppm 0.01	0.01 0.01 0.01 0.02 0.02	0.46 0.48 0.50		0.96 0.98 0.91 1.03		26.9 0.08 27.5 0.09 25.8 0.07 28.6 0.10
ME-MS61r Be ppm 0.05	40.0540.0540.0540.0540.0540.0540.05	1.43 1.53 1.36		1.24 1.21 1.11 1.34		3.06 3.05 2.85 3.26
ME-MS61r Ba ppm 10	41041041050	260 260 230 290		210 230 190 250		470 470 420 520
ME-MS61r As ppm 0.2	 60.2 60.2 60.2 60.2 60.2 60.2 60.4 	2.1 2.0 2.4		2.5 2.5 2.2 2.8		16.1 16.4 15.2 17.3
ME- MS61r Al % 0.01	SLANKS -0.01 -0.01 -0.01 -0.02 DUPLICATES	5.78 5.84 5.51 6.11		3.23 3.30 3.09 3.44		7.30 7.30 6.93 7.68
ME-MS61r Ag ppm 0.01	-0.01 -0.01 -0.01 -0.02	0.04 0.03 0.02 0.05		0.04 0.04 0.03		0.30 0.31 0.28 0.33
ME- GRA05 LOI % 0.01			3.13 3.08 3.02 3.19		0.66 0.68 0.64 0.70	
ME-XRF15b Total % 0.01	99.00 99.10 0.02	99.38 99.31 96.85		99.41 99.43 96.92 101.90		
ME- XRF15b Zr % 0.01	<0.01 <0.01 <0.01 0.02	0.04 0.03 0.02		0.03 0.03 0.02		
ME- XRF15b Zn % 0.005	<0.005 <0.005 <0.005 <0.006	<0.005 <0.005 <0.005 <0.010		<0.005 <0.005 <0.005 <0.005		
Method Analyte Units LOR	pur pur pur	pur	pu	pu	pur	pur
cription	BLANK BLANK BLANK Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound	TS- 500L- 2 DUP Target Range Lower Bound Upper Bound	TS- 250L- 1 DUP Target Range - Lower Bound Upper Bound	T2- R50- 1 DUP Target Range - Lower Bound Upper Bound	T2- R50- 2 DUP Target Range Lower Bound Upper Bound	T4-250L-1 DUP Target Range - Lower Bound Upper Bound
Sample Description	BLANK BLANK BLANK Target Range BLANK BLANK Target Range	TS-500L-2 DUP Target Range	TS- 250L- 1 DUP Target Range	T2-R50-1 DUP Target Range	T2-R50-2 DUP Target Rangé	T4-250L-1 DUP Target Range

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7218 www.alsglobal.com

Project: 15-014-NTG01

ect: 15-014-N1G01

Page: 3 - D
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

QC CERTIFICATE OF ANALYSIS BR15083531

	Γ			33334314		T		
ME- MS61r Nb ppm 0.1		<0.1<0.1<0.1<0.1<0.1		13.0 13.6 12.5 14.1		6.5 6.6 7.0		13.7 13.5 12.8 14.4
ME- MS61r Na % 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.05 0.05 0.04 0.06		0.06 0.06 0.05 0.07		0.10 0.09 0.12
ME-MS61r Mo ppm 0.05		<0.05 <0.05 <0.05 <0.05 0.10		0.23 0.23 0.17 0.29		0.29 0.33 0.24 0.38		1.69 1.69 1.56 1.82
ME-MS61r Mn ppm 5		<5 <5 <5 <5 <6 10		48 47 40 55		54 56 47 63		435 428 4 <u>05</u> 458
ME- MS61r Mg % 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.11 0.12 0.10		0.09 0.09 0.08 0.10		0.50 0.51 0.47 0.54
ME- MS61r Li ppm 0.2		<0.2<0.2<0.2<0.2<0.2<0.4		44.5 46.9 43.2 48.2		21.7 21.5 20.3 22.9		40.1 42.0 43.8 43.3
ME-MS61r La ppm 0.5		<0.5<0.5<0.5<0.5<1.0		29.9 32.2 29.0		26.2 26.4 24.5 28.1		49.1 46.2 52.2
ME- MS61r K % 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.96 0.97 0.91		1.01 1.04 0.96 1.09		2.22 2.26 2.12 2.36
ME- MS61r In ppm 0.005		<0.005 <0.005 <0.005 <0.005 0.010	Š.	3.5 0.045 3.6 0.049 3.3 0.040 3.8 0.054		2.8 0.028 2.8 0.028 2.6 0.022 3.0 0.034		0.066 0.066 0.058 0.074
ME- MS61r Hf ppm 0.1	BLANKS	60.160.160.160.160.2	DIIPLICATES	3.5		2.8 2.6 3.0		e. 4 6. 7. 6. 7. 6.
ME- MS61r Ge ppm 0.05		<0.05 <0.05 <0.05 <0.05 <0.05	2	0.09 0.12 <0.0		0.10 0.11 <0.05 0.16		0.18 0.19 0.13 0.24
ME- MS61r Ga ppm 0.05		<0.05 <0.05 <0.05 <0.05 <0.05		16.55 17.45 16.10 17.90		9.11 9.46 8.77		21.6 22.0 20.7 22.9
ME- MS61r Fe % 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.87 0.88 0.82 0.93		0.86 0.88 0.82 0.92		2.73 2.73 2.58 2.88
ME- MS61r Cu ppm 0.2		<0.2 0.2 <0.2 <0.2 <0.2		13.9 14.0 13.3		58.9 60.0 57.2 61.7		7.57 826 7.71 825 7.21 796 8.07 855
ME- MS61r Cs ppm 0.05		<0.05 <0.05 <0.05 <0.05 <0.05		8.33 9.02 8.19		4.59 4.67 4.35 4.91		7.57 7.71 7.21 8.07
Method Analyte Units LOR		pun	pun	pun	Lower Bound Upper Bound	Lower Bound Upper Bound	Lower Bound Upper Bound	Lower Bound Upper Bound
Sample Description		BLANK BLANK Target Range - Lower Bound PARK BLANK	BLANK Target Range - Lower Bound Upper Bound	T5-500L-2 DUP Target Range - Lower Bound Upper Bound	T5-250L-1 DUP Target Range - Lower Bound Upper Bound	T2-R50-1 DUP Target Range - Lower Bound Upper Bound	T2-R50-2 DUP Target Range - Lower Bound Upper Bound	T4-250L-1 DUP Target Range - Lower Bound Upper Bound

Australian Laboratory Services Pty. Ltd.

32 Shand Street
Stafford
Brisbane QLD 4053
Phone: +61 (7) 3243 7222 Fax:
www.alsglobal.com

222 Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: 3 - E
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

	TANAN AND STREET, STRE	**************************************		· · · · · · · · · · · · · · · · · · ·					
ME- MS61r Ti % 0.005	<0.005 <0.005 <0.005	0.010		0.437 0.456 0.474		0.219 0.210 0.199 0.230		0.389 0.397 0.368 0.418	
ME-MS61r Th ppm 0.2	<0.2 <0.2 <0.2	<0.2 0.4		21.3 21.9 20.3 22.9		13.1 13.9 12.6 14.4		24.0 25.5 23.3 26.2	
ME- MS61r Te ppm 0.05	<0.05 <0.05 <0.05	<0.10		<0.05 <0.05 <0.05 0.10		<0.05 <0.05 <0.05 0.10		0.10 0.10 <0.05 0.16	
ME-MS61r Ta ppm 0.05	<0.05 <0.05 <0.05	0,10		1.49 1.29 1.57		0.65 0.72 0.60 0.77		1.18 1.25 1.10	
ME-MS61r Sr ppm 0.2	<0.2 <0.2 <0.2	6.4		13.4 14.2 14.7		13.6 13.7 12.8 14.5		26.8 27.0 25.4 28.4	
ME-MS61r Sn ppm 0.2	<0.2 <0.2 <0.2	<0.2 0.4		4.0 4.1 3.6 4.5		2.6 2.7 2.3		4.2 4.3 3.8 4.7	
ME-MS61r Se ppm 1	777	٠ <u>٠</u> ٧٠		Z		<u>^</u> 0		0 A A &	
ME-MS61r Sc ppm 0.1	0.1 0.1 0.1	<0.7 0.2		10.2 10.5 9.7		6.0 6.1 5.6 6.5		14.9 15.3 14.2 16.0	
ME- MS61r Sb ppm 0.05	0.06 <0.05 0.05	<0.05 0.10	S	0.95 0.61 0.67 0.89		0.67 0.70 0.58 0.79		2.34 2.39 2.14 2.59	
ME-MS61r S % 0.01	BLANKS <0.01 <0.01 <0.01		DUPLICATES	0.01 0.01 <0.01 0.02		0.02 0.02 <0.01 0.03		0.03 0.03 0.02 0.04	
ME-MS61r Re ppm 0.002	<0.002 <0.002 <0.002	0.002	2	<0.002 <0.002 <0.002 0.004		<0.002 <0.002 <0.002 0.004		0.002 <0.002 <0.002 <0.004	
ME-MS61r Rb ppm 0.1	<0.1 0.1 0.2	<0.1 0.2		85.3 89.4 82.9 91.8		71.5 73.1 68.6 76.0		149.0 150.0 142.0 157.0	
ME- MSG1r Pb ppm 0.5	<0.5 <0.5 0.9	40.5		19.7 19.9 18.3 21.3		17.9 19.2 17.1		240 241 228 253	
ME-MS61r P ppm 10	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	<10 20		60 60 50 70		140 150 130 160		157.0 800 158.0 800 149.5 750 165.5 850	
ME-MS61r Ni ppm 0.2	<0.2 <0.2 <0.2	0.4		18.8 20.1 18.3 20.6		15.5 16.3 14.9		157.0 158.0 149.5 165.5	
Method Analyte Units LOR		bur pun pur		pur	pur	pur	Lower Bound Upper Bound	pur	
Sample Description	BLANK BRANK BRANK	Target Range - Lower Bound BLANK BLANK BLANK Target Range - Lower Bound Upper Bound		T5-500L-2 DUP Target Range - Lower Bound Upper Bound	T5-250L- 1 DUP Target Range - Lower Bound Upper Bound	T2-R50-1 DUP Target Range - Lower Bound Upper Bound	T2-R50-2 DUP Target Range - Lower Bound Upper Bound	14-250L- 1 DUP Target Range - Lower Bound Upper Bound	

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 3 - F Total # Pages: 5 (A - G) Plus Appendix Pages Finalized Date: 7-JUL- 2015 Account: HYDROB

BR15083531 QC CERTIFICATE OF ANALYSIS

1 1					***************************************				
	ME- MS61r Pr ppm 0.03		<0.03 <0.03 <0.03 <0.03 <0.06		6.27 6.51 5.88 6.90		5.73 5.96 5.38 6.31		10.35 10.45 9.59 (1.20
	ME-MS61r Nd ppm 0.1		<0.1<0.1<0.1<0.1<0.2		22.8 23.8 21.5 25.1		20.8 21.7 19.6 22.9		38.7 38.7 35.6 41.6
	ME-MS61r Lu ppm 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.26 0.26 0.23 0.29		0.17 0.18 0.15		0.40 0.41 0.36 0.45
	ME-MS61r Ho ppm 0.01		<0.01 <0.01 <0.01 <0.01 0.02		0.54 0.54 0.49 0.59		0.39 0.41 0.36		0.95 0.96 0.87 1.04
	ME-MS61r Gd ppm 0.05		<0.05 <0.05 <0.05 <0.05 0.10		3.48 3.51 3.18 3.81		3.03 3.21 2.84 3.40		6.51 6.64 6.03 7.12
	ME- MS61r Eu ppm 0.03		<0.03 <0.03 <0.03 <0.06 0.06		0.72 0.73 0.64 0.81		0.62 0.66 0.56 0.72		1.33 1.22 1.49
	ME- MS61r Er ppm 0.03		<0.03 <0.03 <0.03 <0.03 0.06		1.57 1.60 1.44 1.73		1.09 1.15 1.01		2.68 2.68 2.44 2.91
	ME- MS61r Dy ppm 0.05		<0.05 <0.05 <0.05 <0.05 0.10		2.76 2.78 2.51		2.08 2.21 1.93 2.36		5.11 5.17 4.70 5.58
_	ME- MS61r Zr ppm 0.5		<0.5 <0.5 <0.5 <0.5 <0.5	S	116.5 129.0 116.0 129.5		101.0 95.2 92.7 103.5		147.5 145.0 (138.5 (154.0
	ME-MS61r Zn ppm 2	BLANKS	\$ \$ \$ \$ 4	DUPLICATES	o o 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		18 16 21		102 102 95 109
	ME-MS61r Y ppm 0.1		<0.1 <0.1 <0.1 <0.1 0.2	na	14.3 15.3 14.0		11.0 11.1 10.4		25.4 25.4 24.0 26.8
	ME- MS61r W ppm 0.1		<0.1 0.1 <0.1 <0.7 0.2		2.5 2.5 2.2 2.8		1.8 1.6 2.1		2.5 2.7 2.3 2.9
	ME-MS61r V ppm 1		₹ ₹ ₹ ₹ ₹		40 40 37 43		21 22 19 24		83 83 7/8 88
	ME- MS61r U ppm 0.1		60.160.160.160.160.2		3.3 3.4 3.6		6.4 6.5 6.0		0.79 76.0 0.83 78.2 0.73 73.1 0.89 81.1
	ME- MS61r Ti ppm 0.02		<0.02 <0.02 <0.02 <0.02 <0.02 0.04		0.55 0.55 0.49		0.35 0.36 0.31 0.40		0.79 0.83 0.73 0.89
•	Method Analyte Units LOR		pu	pui	nd	nd	pu	nd Ind	pu
	Sample Description		BLANK BLANK BLANK Target Range - Lower Bound BLANK BLANK	Target Range - Lower Bound Upper Bound	T5-500L-2 DUP Target Range - Lower Bound Upper Bound	T5-250L-1 DUP Target Range - Lower Bound Upper Bound	T2-R50- 1 DUP Target Range - Lower Bound Upper Bound	T2-R50- 2 DUP Target Range - Lower Bound Upper Bound	T4-250L- 1 DUP Target Range - Lower Bound Upper Bound

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 3 - G Total # Pages: 5 (A - G) Plus Appendix Pages Finalized Date: 7-JUL- 2015 Account: HYDROB

QC CERTIFICATE OF ANALYSIS

BR15083531

Method Analyte Sample Description Units LOR	ME- MS61r Sm ppm 0.03	ME-MS61r Tb ppm 0.01	ME-MS61r Tm ppm 0.01	ME-MS61r Yb ppm 0.03	
					BLANKS
BLANK BLANK BLANK Target Range - Lower Bound Upper Bound BLANK BLANK Target Range - Lower Bound	<0.03 <0.03 <0.03 <0.03 <0.03	 <0.03 <0.01 <0.03 <0.01 <0.03 <0.01 <0.06 <0.02 	<0.01 <0.01 <0.01 <0.01 0.02	<0.03 <0.03 <0.03 <0.03 <0.06	
					DUPLICATES
TS-500L-2 DUP Target Range - Lower Bound Upper Bound	4.43 4.47 4.09 4.81	0.49 0.50 0.45 0.54	0.23 0.23 0.20 0.26	1.60 1.59 1.45	
TS- 250L- 1 DUP Target Range - Lower Bound Upper Bound					
T2-R50-1 DUP Target Range - Lower Bound Upper Bound	3.97 4.23 3.76 4.44	3.97 0.40 4.23 0.43 3.76 0.37 4.44 0.46	0.15 0.16 0.13 0.18	1.06 1.17 1.00 1.23	
T2-R50-2 DUP Target Range - Lower Bound Upper Bound					
T4-250L-1 DUP Target Range- Lower Bound Upper Bound	7.50 7.70 7.00 8.20	0.90 0.92 0.83 0.99	0.37 0.38 0.34 0.41	2.44 2.55 2.28 2.71	

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 4 - A
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

Method Analyte Sample Description LOR	ME- XRF1 5b AI2O3 % 0.01	ME- XRF1 5b As % 0.01	ME-XRF15b BaO % 0.01	ME- XRF15b Bi % 0.01	ME- XRF15b CaO % 0.01	ME- XRF15b ME- XRF15b CeO2 Co % % % 0.01 0.01	ME- XRF15b Co % 0.01	ME- XRF1 5b Cr % 0.01	ME- XRF15b Cu % 0.005	ME- XRF15b Fe % 0.01	ME- XRF15b HfO2 % 0.01	ME- XRF1 5b K2O % 0.01	ME- XRF15b La2O3 % 0.01	ME- XRF15b MgO % 0.01	ME- XRF1 Sb Mn % 0.01
	SCA de la descripción de la constantina del constantina del constantina de la constantina del constantina de la constantina del constant				na	DUPLICATES	S								
T4-500L-1 DUP Target Range - Lower Bound. Upper Bound															
T3b-L50- 2 DUP Target Range - Lower Bound Upper Bound	5.59 5.55 5.45 5.69	5.59 0.01 5.55 <0.01 5.45 <0.01 5.69 0.02	0.02 0.02 <0.01 0.03	<0.01 <0.01 <0.01 0.02	0.02 0.03 <0.01 0.04	0.01 <0.01 <0.02	0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.02	<0.01 <0.01 <0.02	<0.005 <0.005 <0.005 0.010		1.18 <0.01 1.18 <0.01 1.15 <0.01 1.21 0.02	1.72 1.72 1.67 1.77	<0.01 <0.01 <0.01 0.02	0.17 0.18 0.16	0.02 0.02 <0.01 0.03
T3b- 50R- 1 DUP Target Range - Lower Bound Upper Bound															
T3b- 500R- 2 DUP Target Range - Lower Bound Upper Bound															
T3-L50-1 DUP Target Range - Lower Bound Upper Bound	6.42 0.01 6.36 0.01 6.25 <0.01 6.53 0.02	0.01 0.01 <0.01 0.02	0.02 0.02 <0.01 0.03	<0.01 <0.01 <0.01 0.02	0.03 0.03 0.02 0.04	0.01 <0.01 <0.01 0,02	0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02	<0.01 <0.01 <0.01 0.02	0.005 0.006 <0.005 0.010	1.18 1.15 1.21	<0.01 <0.01 <0.01 0.02	1.38 1.37 1.33	<0.01 <0.01 <0.01 0.02	0.18 0.19 0.20	0.02 0.02 <0.01 0.03
T3- R50- 1 DUP Target Range - Lower Bound Upper Bound															
T3- R50- 2 Dup Target Range - Lower Bound Upper Bound				,											-
ORIGINAL DUP Target Range - Lower Bound Upper Bound															

Minerals ALS

T4-500L-1

DUP

T3b-L50-2

T3b-50R-1

Australian Laboratory Services Pty. Ltd.

Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com 32 Shand Street

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Total # Pages: 5 (A - G)
Plus Appendix Pages

Account: HYDROB

Finalized Date: 7- JUL- 2015

Page: 4 - B

<0.005<0.005 <0.005 <0.005 <0.005 0.010 ME- XRF15b ME- XRF15b Y203 % 0.005 <0.005 BR15083531 0.002 0.001 <0.001 <0.001 w % 0.0001 0.002 0.002 0.002 ME-XRF15b ME-XRF15b ME-XRF15b ME-XRF15b ME-XRF15b ME-XRF15b ME-XRF15b ME-XRF15b <0.01 <0.01 <0.07 <0.07 > % 0.0 0.02 OC CERTIFICATE OF ANALYSIS 0.55 0.55 0.53 0.57 0.48 0.48 0.46 Ti02 % 0.01 0.50 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 0.02 Sr 0.01 <0.005 <0.005 <0.005 <0.005 <0.005 Sn % 0.005 0.010 0.010 87.7 87.7 85.9 89.5 85.6 85.3 83.7 87.2 SiO2 % 0.0 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010 Sb % 0.005 <0.01 <0.01 0.02 ^0.01 ^0.01 0.01 s % 0.01 **DUPLICATES** <0.005 0.010 Rb % 0.005 0.009 <0,005 0.008 <0.005 <0.005 <0.005 <0.005 0.010 <0.005 Pb % 0.005 0,010 0.03 0.03 0.02 0.02 0.03 <0.01 ME-XRF15b ME-XRF15b ME-XRF15b 0.04 P205 %0.01 0.04 <0.005 <0.005 0.010 <0.005 <0.005 0.010 Ni % 0.005 <0.005 <0.005 0.010 0.010 <0.005 <0.005 % 0.005 g <0.005 <0.005 <0.005 <0.005 <0.005 Mo % 0.005 0,010 Method Analyte Units LOR Target Range - Lower Bound Target Range - Lower Bound Upper Bound Target Range - Lower Bound Farget Range - Lower Bound Farget Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound Target Range - Lower Bound Upper Bound Target Range - Lower Bound Sample Description

T3b- 500R- 2

DUP

T3-L50-1

T3-R50-1

DUP

Upper Bound

T3-R50-2

Farget Range - Lower Bound

ORIGINAL

DUP

Upper Bound

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 4 - C
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

	61r									
	ME-MS61r Cr ppm 1					63 61 58 66			14 14 12	70 72 66 76
	ME- MS61r Co ppm 0.1		·			10.3 10.3 9.7 10.9			8.0 8.3 7.6	9.0 9.1 8.5
	ME-MS61r Ce ppm 0.01					85.7 86.1 81.6 90.2			50.8 51.2 48.4 53.6	44.6 44.8 42.5 46.9
	ME-MS61r Cd ppm 0.02					<0.02 <0.02 <0.02 0.04			<0.02 <0.02 <0.02 0.04	0.06 0.06 0.04 0.08
	ME-MS61r Ca % 0.01					0.02 0.02 <0.01 0.03			0.01 0.01 <0.01 0.02	7.15 7.19 6.80 7.54
	ME-MS61r Bi ppm 0.01					0.62 0.65 0.59 0.68			0.47 0.46 0.43 0.50	0.01 0.01 <0.01 0.02
	ME-MS61r Be ppm 0.05					2.81 2.87 2.65 3.03			0.82 0.81 0.72	1.60 1.59 1.47
	ME-MS61r Ba ppm 10					380 380 340 420			170 130 130	490 480 440 530
J	ME- MS61r As ppm 0.2	<u>-S</u>				7.47 13.0 7.54 13.0 7.12 12.2 7.89 13.9			2.5 2.5 2.2 2.8	<0.2 0.4 <0.2 0.4
	ME- MS61r Al % 0.01	DUPLICATES							2.40 2.34 2.24 2.50	5.12 5.11 4.85 5.38
	ME- MS61r Ag ppm 0.01]]				0.06 0.07 0.05			0.04 0.04 0.03	0.05 0.04 0.03 0.06
	ME- GRA05 LOI % 0.01		2.24 2.21 2.16 2.29		3.54 3.47 3.41 3.60			3.72 3.81 3.66 3.87		
	ME-XRF15b Total % 0.01			99.47 99.41 96.94 101.95			99.80 99.43 97.11 102.10			
	ME- XRF15b Zr % 0.01			 <0.005 <0.004 <0.005 <0.04 <0.005 <0.03 <0.010 <0.05 			0.04 0.04 0.03 0.05			
	ME- XRF1 5b Zn % 0.005			<0.005 <0.005 <0.005 0.010			<0.005 <0.005 <0.005 0.010			
h	Method Analyte Units LOR		nd nd	nd. nd	nd	nd	nd	pu	pu	ກ່ຕ
	Sample Description		T4-500L-1 DUP Target Range - Lower Bound Upper Bound	T3b- L50- 2 DUP Target Range - Lower Bound Upper Bound	T3b- 50R- 1 DUP Target Range - Lower Bound Upper Bound	T3b- 500R- 2 DUP Target Range - Lower Bound Upper Bound	T3-L50-1 DUP Target Range - Lower Bound Upper Bound	T3-R50-1 DUP Target Range - Lower Bound Upper Bound	T3- R50- 2 DUP Target Range - Lower Bound Upper Bound	ORICINAL DUP Target Range - Lower Bound Upper Bound
	Sample		T4- 500L- 1 DUP Target Ran	T3b-L50-2 DUP Target Rang	T3b- 50R- 1 DUP Target Rang	T3b- 5(DUP Target	T3-L50- DUP Target Re	T3-R50-1 DUP Target Ra	T3-R50-2 DUP Target Rar	ORIGINAL DUP Target Ra

Minerals

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 4 - D
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531 QC CERTIFICATE OF ANALYSIS

ME-MS61r Nb ppm 0.1				15.6 15.8 14.8 16.6			5.4 5.6 5.9	33.1 33.1 35.0
ME- MS61r Na % 0.01				0.07 0.07 0.06 0.08			0.06 0.06 0.05 0.05	1.95 1.96 1.85 2.06
ME-MS61r Mo ppm 0.05				1.06 1.06 0.96 1.16			0.22 0.23 0.16 0.29	<0.05 <0.05 <0.05 0.10
ME- MS61r Mn ppm 5				76 77 68 85			127 124 114 137	659 671 627 703
ME- MS61r Mg % 0.01				0.18 0.18 0.16			0.07 0.07 0.06	5.06 5.09 4.81 5.34
ME- MS61r Li ppm 0.2				46.4 45.5 43.5 48.4			16.6 16.5 15.5 17.6	40.0 38.0 36.9 41.2
ME-MS61r La ppm 0.5				43.2 43.9 40.9 46.2			23.2 23.5 21.7 25.0	19.8 19.8 18.3 21.3
ME- MS61r K % 0.01				1.52 1.53 1.44			0.81 0.80 0.75 0.86	1.27 1.25 1.19 1.33
ME- MS61r In ppm 0.005	S			0.078 0.082 0.071 0.089			0.018 0.021 0.014 0.025	0.137 0.143 0.128 0.152
ME- MS61r Hf ppm 0.1	DUPLICATES			4.0 4.2 3.8 4.4			3.3 3.1 3.5	2.8 2.8 3.0
ME-MS61r Ge ppm 0.05	na			0.19 0.23 0.15			0.12 0.14 0.07 0.19	0.19 0.16 0.12 0.23
ME-MS61r Ga ppm 0.05				22.8 22.8 21.6 24.0			6.28 6.57 6.05	14.50 14.20 13.60
ME- MS61r Fe % 0.01				5.73 5.79 5.46 6.06			0.83 0.80 0.76	4.42 4.44 4.20 4.66
ME-MS61r Cu ppm 0.2				22.0 22.5 21.3 23.2			33.7 34.7 32.8 35.6	0.75 14.0 0.76 12.6 0.67 12.6 0.84 14.0
ME- MS61r Cs ppm 0.05				9.65 9.69 9.14 10.20			2.77 2.84 2.61 3.00	0.75 0.76 0.67 0.84
Method Analyte Units LOR	ງຕຸ	pu	pu	nd	pu	ри	pu nd	nd nd
Sample Description	T4-500L-1 DUP Target Range - Lower Bound Upper Bound	T3b-L50-2 DUP Target Range - Lower Bound Upper Bound	T3b- 50R- 1 DUP Target Range - Lower Bound Upper Bound	T3b- 500R- 2 DUP Target Range - Lower Bound Upper Bound	T3- L50- 1 DUP Target Range - Lower Bound Upper Bound	T3-R50-1 DUP Target Range Lower Bound Upper Bound	T3- R50- 2 DUP Target Range - Lower Bound Upper Bound	ORIGINAL DUP Target Range - Lower Bound Upper Bound

Australian Laboratory Services Pty. Ltd. 32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 4 - E
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

		THE RESERVE TO SERVE THE S						
ME- MS61r Ti % 0.005				28.8 0.428 29.3 0.447 27.4 0.411 30.7 0.464			0.180 0.180 0.166 0.194	1.290 1.290 1.220 1.360
ME- MS61r Th ppm 0.2				28.8 29.3 27.4 30.7			12.9 12.7 12.0	2.0 2.0 1.7 2.3
ME-MS61r Te ppm 0.05				0.05 0.05 <0.05 0.10			<0.05 <0.05 <0.05 0.10	<0.05 <0.05 <0.05 0.10
ME-MS61r Ta ppm 0.05				1.47 1.48 1.35 1.60			0.73 0.78 0.67 0.84	2.00 2.01 1.85 2.16
ME-MS61r Sr ppm 0.2			r	20.6 20.7 19.4 21.9			11.3 11.8 10.8 12.3	269 269 255 283
ME-MS61r Sn ppm 0.2				5.3 20.6 5.1 20.7 4.7 19.4 5.7 21.9			1.9 1.9 1.6 2.2	2.0 2.1 1.7 2.4
ME-MS61r Se ppm 1				1 <1 2			- t - 2 - T	22 \$4.
ME-MS61r Sc ppm 0.1				14.5 14.5 13.7 15.3			3.9 3.9 3.6 4.2	36.1 36.1 34.2 38.0
ME- MS61r Sb ppm 0.05	S			2.52 2.63 2.33 2.82			3.28 3.12 2.91 3.49	0.24 0.22 0.16 0.30
ME-MS61r S % 0.01	DUPLICATES			0.01 0.01 <0.01			0.01 0.01 <0.01	<0.01 <0.01 <0.01 0.02
ME-MS61r Re ppm 0.002	Na			<0.002 <0.002 <0.002 0.004			<0.002 <0.002 <0.002 0.004	<0.002 <0.002 <0.002 0.004
ME-MS61r Rb ppm 0.1				147.0 144.0 138.0 153.0			52.5 54.4 50.7 56.2	26.5 25.8 24.7 27.6
ME-MS61r Pb ppm 0.5				28.3 28.7 26.6 30.4			10.5 10.5 9.5 11.5	1.2 1.3 0.7
ME-MS61r P ppm 10				80 70 60			90 100 80 110	2100 2130 2000 2230
ME- MS61r Ni ppm 0.2				21.3 21.6 20.2 22.7			8.0 8.7 7.7 0.6	19.3 19.9 18.4 20.8
Method Analyte Units LOR	Lower Bound Upper Bound	nd nd	nd nd	pu	nd	nd	pu	pu
Sample Description	T4-500L-1 DUP Target Range Lower Bound Upper Bound	T3b-L50- 2 DUP Target Range Lower Bound 'Upper Bound	T3b- 50R- 1 DUP Target Range - Lower Bound Upper Bound	T3b-500R-2 DUP Target Range - Lower Bound Upper Bound	T3-L50-1 DUP Target Range - Lower Bound Upper Bound	T3-R50- 1 DUP Target Range - Lower Bound Upper Bound	T3-R50- 2 DUP Target Range Lower Bound Upper Bound	ORIGINAL DUP Target Range - Lower Bound Upper Bound

***** See Appendix Page for comments regarding this certificate *****

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 Fi

2 Fax: +61 (7) 3243 7218

D

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: 4 - F
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

Method	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	361r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r	ME-MS61r
Analyte Units Sample Description LOR	TI ppm 0.02	U ppm 0.1	> mdd	W ppm 0.1	۲ ppm 0.1	1	Zr ppm 0.5	Dy ppm 0.05	Er ppm 0.03	Eu ppm 0.03	0.05	по ррт 0.01	Lu ppm 0.01	0.1	0.03
					na	DUPLICATES	S								
T4-500L- 1 DUP Target Range - Lower Bound Upper Bound	naktivoriski (MAS Massika sa suresunania														
T3b- L50- 2 DUP Target Range Lower Bound Upper Bound	anna kakan na manakan na mana														
T3b- 50R- 1 DUP Target Range Lower Bound Upper Bound															
T3b- 500R- 2 DUP Target Range - Lower Bound Upper Bound	0.72 0.73 0.65	6.3 6.0 6.9	95 97 90 102	3.3 3.0 3.6	21.3 21.8 20.4 22.7	13 13 16	139.0 142.5 133.0 148.5	4.47 4.60 4.14 4.93	2.52 2.57 2.32 2.77	1.08 1.11 0.98 1.21	5.69 5.61 5.18 6.12	0.86 0.86 0.93	0.38 0.39 0.35	33.0 33.7 36.0	8.93 9.09 8.30
T3- L50- 1 DUP Target Range - Lower Bound Upper Bound															
T3- R50- 1 DUP Target Range - Lower Bound Üpper Bound															
T3- R50- 2 DUP Target Range - Lower Bound Upper Bound	0.24 0.24 0.20 0.28	2.8 2.8 2.6 3.0	17 17 15	1.3 1.3 1.1	8.8 9.0 8.4 9.4	12 12 9 15	113.5 113.5 107.5 119.5	1.90 1.89 1.70 2.09	1.00 0.96 0.88 1.08	0.52 0.51 0.45 0.58	2.83 2.71 2.51 3.03	0.35 0.33 0.30 0.38	0.16 0.16 0.14 0.18	18.5 18.0 19.7	4.98 4.89 4.53 5.34
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.11 0.11 0.08 0.14	0.11 1.4 0.11 1.4 0.08 1.2 0.14 1.6	230 232 218 244	22.0 22.6 20.5 24.1	39.3 37.5 36.4 40.4	51 52 47 56	118.0 111.0 108.5 120.5	7.35 7.42 6.78 7.99	4.27 4.21 3.89 4.59	2.15 2.17 2.35	7.83 7.79 7.17 8.45	1.47 1.35 1.60	0.58 0.59 0.53 0.64	25.7 26.7 24.1 28.3	5.66 5.82 5.28 6.20

***** See Appendix Page for comments regarding this certificate *****

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 4 - G
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

	MF- MS61r M	ME-MS61r	ME-MS61r	ME-MS61r	
Method Analyte Sample Description Units LOR		Tb ppm 0.01	Tm ppm 0.01	УЬ ррт 0.03	
					DUPLICATES
T4-500L-1 DUP Target Range - Lower Bound Upper Bound					
T3b-L50- 2 DUP Target Range - Lower Bound Upper Bound					
T3b-50R-1 DUP Target Range - Lower Bound Upper Bound					
T3b- 500R- 2 DUP Target Range - Lower Bound Upper Bound	6.60 0.79 0.36 6.66 0.82 0.36 6.10 0.73 0.32 7.16 0.88 0.40	0.79 0.82 0.73	0.36 0.36 0.32 0.40	2.44 2.43 2.22 2.65	
T3-L50-1 DUP Target Range - Lower Bound Upper Bound					
T3-R50-1 DUP Target Range - Lower Bound Upper Bound					
T3-R50-2 DUP Target Range - Lower Bound Upper Bound	3.66 0.36 3.61 0.36 3.33 0.32 3.94 0.40	0.36 0.36 0.32 0.40	0.15 0.14 0.12 0.17	1.00 1.10 0.94 1.16	
ORIGINAL DUP Target Range - Lower Bound Upper Bound	6.69 1.19 6.93 1.17 6.27 1.08 7.35 1.28		0.59 0.59 0.54 0.64	3.78 3.79 3.47 4.10	

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

Page: 5 - A
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB QC CERTIFICATE OF ANALYSIS

BR15083531

ME_XMF15b ME_XMF15b <t< th=""><th></th></t<>	
RF15b ME-XRF15b MGO 01 0.001 0.01	
FF15b ME-XRF15b	
FFI 5b ME- XRFI 5b	
FFI 5b ME-XRFI 5b ME-X	
FF15b ME-XRF15b ME-XRF15b C C	
Tr Cu Cu % % 01 0.005	
7.7 % 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ME-X	
ME-XRF15b Co 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
DUPLICATES	
GaO SA SARFI SP CAO SA SARFI SP CAO SA SARFI SP CAO SA	
ME- XRF1 Sb 8	
ME-XRF15b BaO % 0.01	
ME XRF15b ME-XRF15b AS BaO AS BaO % % % % % % % % % % % % % % % % % % %	
ME- XRF1 Sb A12 O3 % 0.01	
Method Analyte Units LOR und	
Sample Description Units	

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

OC CERTIFICATE OF ANALYSIS

Page: 5 - B
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531

 ME-XRF15b
 <t
 ME. XRF15b
 Sb
 Sb
 Sb
 NB
 Sb
 NB
 Sb
 NB
 NB< **DUPLICATES** Target Range - Lower Bound Upper Bound Method Analyte Units LOR Sample Description ORIGINAL DUP

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

JLD 4053 51 (7) 3243 7222 Fax: +61 (7) 3243 7218 global.com

Project: 15-

Project: 15-014-NTG01

oJect: 15- 014- N1G01

QC CERTIFICATE OF ANALYSIS

Page: 5 - C
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531

ME- MS61r Cr ppm 1					
ME-MS61r Co ppm 0.1					
ME-MS61r Ce ppm 0.01					
ME-MS61r Cd ppm 0.02					
ME- MS61r Ca % 0.01					
ME- MS61r Bi ppm 0.01					
ME-MS61r Be ppm 0.05					
ME-MS61r Ba ppm 10					
ME- MS61r As ppm 0.2	ES				
ME- MS61r Al % 0.01	DUPLICATES				
ME-MS61r Ag ppm 0.01	2				
ME- GRA05 LOI % 0.01		7.64 7.66 7.45 7.85			
ME- XRF15b Total % 0.01					
ME- XRF1 5b Zr % 0.01					
ME- XRF15b Zn % 0.005					
Method Analyte Units LOR		pun			
Sample Description		ORIGINAL DUP Target Range Lower Bound Upper Bound			

Dinerals

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS

Page: 5 - D
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531

ME-MS61r ME-MS61r Na Nb % ppm 0.01 0.1 ME-MS61r ME-MS61r ME-MS61r Mo ppm 0.05 Mn ppm 5 Mg %.01 ME- MS61r Li ppm 0.2 ME-MS61r La ppm 0.5 ME-MS61r × % 0.0 ME-MS61r ME-MS61r Hf In ppm ppm 0.1 0.005 **DUPLICATES** ME-MS61r Ge ppm 0.05 ME-MS61r Ga ppm 0.05 ME-MS61r Fe % ME-MS61r ME-MS61r
Cs Cu
ppm ppm
0.05 Target Range - Lower Bound Method Analyte Units LOR Upper Bound Sample Description ORIGINAL DUP

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

BR15083531 QC CERTIFICATE OF ANALYSIS

Page: 5 - E
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

		 MYTA VICENTIA DE LA CONTRACTOR DE LA CON	A		
ME- MS61r Ti % 0.005					
ME-MS61r Th ppm 0.2					
ME-MS61r Te ppm 0.05					
ME-MS61r Ta ppm 0.05					
ME-MS61r Sr ppm 0.2					
ME-MS61r Sn ppm 0.2					
ME- MS61r Se ppm 1					
ME-MS61r Sc ppm 0.1					
ME-MS61r Sb ppm 0.05	S				
ME- MS61r S % 0.01	DUPLICATES				
ME-MS61r Re ppm 0.002	ם				
ME-MS61r Rb ppm 0.1					
ME-MS61r Pb ppm 0.5					
ME-MS61r P ppm 10					
ME- MS61r Ni ppm 0.2					
Method Analyte Units LOR	und				
Sample Description	ORIGINAL DUP Target Range - Lower Bound Upper Bound			*	

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: 5 - F
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

)							-								
	Method	ME- MS61r	61r	ME- MS61r	ME- MS61r	ME- MS61r	ME- MS61r	ME- MS61r	ME- MS61r	ME- MS61r	ME-MS61r	ME-MS61r	ME- MS61r	ME-MS61r	ME-MS61r	ME-MS61r
Sample Description	Analyte Units LOR	11 ppm 0.02	U ppm 0.1	v ppm 1		ү ррт 0.1		2r ppm 0.5			eu ppm 0.03	0.02	0.01	Lu ppm 0.01	ppm ppm 0.1	ppm 0.03
ORIGINAL DUP Target Range - Lower Bound Upper Bound	punc			-		na	DUPLICATES	S								

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 www.alsglobal.com

Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS

Page: 5 - G
Total # Pages: 5 (A - G)
Plus Appendix Pages
Finalized Date: 7-JUL- 2015
Account: HYDROB

BR15083531

	DUPLICATES	
	DUP	
ME-MS61r Yb ppm 0.03		
ME-MS61r Tm ppm 0.01		
ME-MS61r Tb ppm 0.01		
ME- MS61r Sm ppm 0.03		
Method Analyte Units LOR	pun	
Sample Description	ORIGINAL DUP Target Range - Lower Bound Upper Bound	
Sample [ORIGINAL DUP Target R	3' -

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 (7) 3243 7222 Fax: + www.alsglobal.com

)53 3243 7222 Fax: +61 (7) 3243 7218

Project: 15-014-NTG01

QC CERTIFICATE OF ANALYSIS BR15083531

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7- JUL- 2015 Account: HYDROB

		ME- MS61r WEI- 21		
CERTIFICATE COMMENTS	ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME-MS61r	LABORATORY ADDRESSES Processed at ALS Brisbane located at 32 Shand Street, Stafford, Brisbane, QLD, Australia. LEV- 01 ME- XRF15b TRA- 21		
	Applies to Method:	Applies to Method:	*	

APPENDIX 3 METALS RESULTS

Site Type Ag Al As Ba Be Bi Ca Cd Ce Co Cr Cs Cu Fe Ga Ge Hf In K La Li Mg Mn Mo Na Nb Ni P Pb Rb Re S Sb Sc Se Sn Sr Ta Te Th Ti Tl U V W Y Zn Zr Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb T2-L250-1 Floodplain 0.02 3.26 1.40 230.00 1.24 0.94 0.01 0.02 53.10 6.80 19.00 4.37 40.70 0.54 10.30 0.09 3.10 0.03 1.11 26.30 22.20 0.09 43.00 0.14 0.08 7.20 10.10 90.00 15.90 77.60 0.00 0.01 0.61 5.80 10.00 0.10 0.05 12.70 0.73 0.09 3.03 0.180 9.90 11.00 113.00 2.01 11.00 113.00 11
T2-L250-2 Floodplain 0.02 2.51 1.40 180.00 0.73 0.29 0.01 0.02 45.20 2.90 15.00 3.05 6.60 0.53 7.42 0.07 2.50 0.02 0.88 22.70 17.00 0.06 40.00 0.13 0.06 5.90 5.10 50.00 9.70 56.00 0.00 0.01 0.59 4.10 10.00 2.10 12.30 0.74 0.05 11.80 0.18 0.29 2.10 18.00 1.40 7.80 8.00 92.30 1.74 0.80 0.47 2.44 0.30 0.43 17.20 4.78 3.32 0.31 0.12 0.83 172-L250-3 Floodplain 0.09 6.22 5.60 370.00 2.61 1.34 0.02 0.02 83.70 44.70 38.00 9.44 178.50 2.08 18.35 0.15 3.30 0.06 1.73 40.60 41.60 0.18 619.00 0.46 0.10 10.50 27.40 210.00 2.790 137.00 0.00 0.01 0.91 11.50 1.00 5.00 20.60 1.80 0.50 20.60 1.80 0.50 20.30 0.30 0.69 8.70 44.00 2.90 17.90 39.00 113.50 3.41 1.80 1.03 4.78 0.65 0.28 33.10 9.01 6.33 0.65 0.26 1.71
T2-L050-1 Floodplain 0.05 3.97 2.40 290.00 1.34 2.63 0.01 0.02 52.00 11.30 25.00 5.54 77.60 0.77 12.15 0.09 2.60 0.04 1.35 25.70 28.00 0.12 45.00 0.28 0.09 7.70 17.50 110.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.01 0.88 7.10 1.00 32.00 92.40 0.00 0.02 1.57 12.60 1.00 32.00 92.40 0.00 0.02 1.57 12.60 1.00 5.00 24.20 1.12 0.05 21.80 0.34 0.74 14.10 48.00 3.00 19.40 52.00 126.00 3.57 1.89 1.02 4.94 0.68 0.30 32.10 8.90 6.22 0.68 0.27 1.85 1.00 1.00 11
T2-L050-3 Floodplain 0.06 5.23 4.70 340.00 2.17 0.55 0.01 0.05 77.60 25.80 33.00 7.32 38.70 1.76 15.90 0.13 3.50 0.05 1.54 37.60 35.50 0.15 437.00 0.33 0.09 9.50 19.90 170.00 19.00 170.00 10.66 9.30 1.00 4.00 19.30 0.27 0.59 5.10 36.00 2.50 15.40 29.00 125.00 3.05 1.54 0.89 4.48 0.56 0.25 30.60 8.09 5.86 0.58 0.22 1.53 12-R250-2 Floodplain 0.03 2.74 3.00 29.00 19.00 19.00 17.00 19.00 17.00 18.
T2-R050-1 Floodplain 0.04 3.23 2.50 210.00 1.24 0.96 0.01 0.03 52.70 12.20 21.00 4.59 58.90 0.86 9.11 0.10 2.80 0.03 1.01 26.20 21.70 0.09 54.00 0.29 0.06 6.50 15.50 140.00 17.90 71.50 0.00 0.02 0.67 6.00 1.00 2.03 5.64 21.00 1.80 11.00 18.00 101.00 2.08 1.09 0.62 3.03 0.39 0.17 20.80 5.73 3.97 0.40 0.15 1.06 T2-R050-2 Floodplain 0.02 0.91 1.20 70.00 0.39 0.81 0.01 0.02 24.00 3.10 7.00 1.29 0.06 6.50 15.50 140.00 10.30 21.80 0.09 0.01 0.35 11.40 7.70 0.03 27.00 0.12 0.03 3.60 4.90 4.90 0.37 0.05 10.30 0.05 0.11 3.40 7.00 0.50 4.80 5.00 33.70 0.98 0.50 0.26 1.46 0.18 0.18 0.10 2.76 2.06 0.19 0.07 0.49
T3b-L250-1 Floodplain 0.06 6.34 9.20 310.00 1.55 0.62 0.02 0.02 93.30 11.70 47.00 6.82 31.70 3.06 17.55 0.15 4.20 0.05 1.37 41.20 30.70 0.15 175.00 1.18 0.06 13.20 24.60 170.00 20.80 19.20 1.23 0.06 27.80 0.41 0.55 6.30 58.00 2.30 18.30 20.00 147.50 3.76 2.08 0.93 4.90 0.71 0.34 31.20 8.40 5.97 0.69 0.30 2.06 170.00 1.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0
T3b-L250-3 Floodplain 0.04 6.71 9.20 300.00 1.54 0.50 0.01 0.02 96.20 8.90 42.00 7.01 23.40 3.01 19.05 0.74 4.10 0.06 1.43 50.10 30.50 0.14 84.00 1.16 0.05 12.50 24.80 110.00 2.20 127.50 0.00 0.01 0.98 12.30 1.00 3.80 18.60 1.27 0.06 25.60 0.38 0.55 6.40 61.00 2.30 2.070 14.00 142.50 4.29 2.30 1.09 5.82 0.80 0.36 38.20 10.30 7.11 0.78 0.33 2.26 13b-R250-2 Floodplain 0.04 4.63 3.90 270.00 1.30 0.45 0.01 0.02 96.20 8.90 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
T3b-R250-3 Floodplain 0.04 5.80 9.70 300.00 1.64 0.48 0.01 0.02 66.60 10.70 46.00 6.69 17.10 3.03 17.85 0.15 3.80 0.05 1.39 34.30 28.10 0.13 67.00 1.11 10.60 2.00 3.60 17.50 1.24 0.05 24.40 0.44 0.61 7.60 62.00 2.40 16.30 11.00 138.50 3.14 1.76 0.75 3.93 0.60 0.29 25.60 7.00 4.80 0.55 0.26 1.78 13b-L500-1 Floodplain 0.03 3.78 3.60 28.00 1.00 0.35 0.01 0.02 67.70 4.70 27.00 3.76 10.90 1.41 10.70 0.13 3.30 0.03 1.20 31.30 16.40 0.10 76.00 0.44 0.66 11.00 10.60 70.00 15.60 86.60 0.00 0.01 2.48 6.40 1.00 2.40 16.80 1.10 0.05 20.70 0.37 0.41 3.50 31.00 1.70 13.60 8.00 113.50 2.92 1.59 0.74 3.71 0.56 0.26 24.10 6.53 4.77 0.52 0.24 1.64
T3b-L500-2 Floodplain 0.03 3.64 3.70 260.00 0.93 0.38 0.01 0.02 65.30 5.00 27.00 3.70 13.40 1.30 11.10 0.12 3.30 0.03 1.19 31.90 16.80 0.08 57.00 0.47 0.05 13.00 12.00 60.00 15.60 83.90 0.00 0.01 1.44 6.60 1.00 2.20 16.30 2.20 0.05 20.40 0.37 0.43 3.90 31.00 1.70 13.40 8.00 114.50 2.89 1.53 0.71 3.72 0.53 0.26 24.50 6.57 4.89 0.51 0.24 1.60 173b-L500-3 Floodplain 0.04 4.00 4.00 270.00 1.19 0.35 0.01 0.02 63.90 5.70 26.00 3.70 11.00 0.13 3.30 0.03 1.19 30.10 17.90 0.09 54.00 0.52 0.05 10.00 1.60 84.70 0.00 0.01 1.65 6.60 1.00 2.30 15.90 1.12 0.05 25.20 0.55 0.04 0.37 0.38 35.00 1.70 13.30 8.00 114.50 2.85 1.55 0.71 3.72 0.53 0.26 24.50 6.57 4.89 0.51 0.24 1.60 1.73b-L500-3 10.00 1.73b-L500-3 10.00 1.73b-L500-3 10.00 1.70b-1.00 1
T3b-R500-2 Floodplain 0.06 7.47 13.00 380.00 2.87 0.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0
T3b-R050-1 Floodplain 0.13 3.78 7.90 32.00 1.43 6.80 0.04 0.03 111.00 49.10 26.00 4.30 280.00 1.47 10.55 0.16 4.00 0.03 1.46 50.70 20.50 0.18 265.00 0.65 0.10 8.90 48.10 22.00 67.90 89.90 0.00 0.01 3.33 6.50 1.00 1.20 19.80 0.22 19.80 0.23 10.45 19.50 36.00 1.50 15.90 36.00 1.50 15.90 36.00 143.50 3.50 1.73 1.08 5.62 0.67 0.26 40.10 10.95 7.62 0.68 0.24 1.71 13b-R050-2 Floodplain 0.05 2.96 4.30 280.00 1.12 0.92 0.02 0.02 119.50 11.80 18.00 3.48 52.40 1.10 8.09 0.18 4.80 0.02 1.32 53.50 16.60 0.10 133.00 0.26 0.10 8.00 13.00 19.50 77.10 0.00 0.01 3.23 4.70 1.00 1.70 18.20 0.97 0.05 28.90 0.31 0.36 5.00 22.00 1.30 14.50 23.00 168.50 3.34 1.57 1.05 5.62 0.58 0.25 42.40 11.50 8.01 0.66 0.24 1.62
T3b-R050-3 Floodplain 0.03 3.36 4.90 290.00 1.22 0.51 0.02 0.02 113.00 9.50 22.00 4.02 18.60 1.42 9.04 0.17 5.00 0.03 1.33 50.80 18.60 0.11 107.00 0.30 0.09 9.20 14.90 120.00 16.20 81.00 0.00 0.01 0.68 5.30 1.00 2.00 1.08 2.50 0.30 1.04 0.40 27.30 0.01 13.00 15.50 21.00 170.50 21.0
T3b-L050-3 Floodplain 0.03 2.38 2.10 130.00 0.73 0.27 0.01 0.02 52.80 24.00 1.00 0.73 0.27 0.01 0.02 52.80 24.00 1.00 0.03 0.59 2.89 0.34 0.15 21.60 5.88 4.15 0.37 0.13 0.87 13-L250-1 Floodplain 0.03 3.29 5.20 240.00 1.63 0.53 0.01 0.02 64.80 5.30 20.00 4.47 14.00 1.09 9.39 0.13 3.70 0.03 1.06 30.40 26.30 0.08 146.00 0.36 0.08 9.40 7.30 120.00 13.90 81.20 0.00 0.01 10.55 5.40 1.00 3.70 15.20 15.20 15.20 0.29 0.38 3.20 23.00 2.50 11.80 11.00 128.00 2.75 1.38 0.63 3.54 0.47 0.21 22.30 6.13 4.39 0.48 0.19 1.38
T3-L250-2 Floodplain 0.03 3.64 4.70 240.00 1.48 0.52 0.01 0.02 63.40 4.30 21.00 5.18 11.10 1.23 10.75 0.14 3.60 0.03 1.11 29.40 31.00 0.08 62.00 0.31 0.09 9.90 7.60 80.00 14.40 89.00 0.00 0.01 3.81 6.20 1.00 4.20 14.90 1.50 0.05 17.20 0.30 0.43 3.30 26.00 2.80 11.90 10.00 122.00 2.71 1.35 0.63 3.65 0.50 0.23 22.40 6.03 4.45 0.50 0.19 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
T3-L500-1 Floodplain 0.02 2.92 3.60 180.00 2.06 5.80 160.00 2.92 3.60 180.00 2.40 0.37 0.03 0.02 78.60 7.00 24.00 4.17 11.10 1.21 8.31 0.16 4.00 0.03 0.67 37.20 31.20 0.07 10.00 0.48 0.61 0.40 14.00 0.03 14.25 6.00 1.00 3.00 17.10 14.60 0.05 17.40 0.47 0.24 3.10 21.00 2.30 16.10 9.00 145.50 3.38 1.70 0.76 4.39 0.61 0.28 27.20 7.30 5.24 0.61 0.25 1.71 173-L500-2 Floodplain 0.02 2.06 5.80 160.00 3.27 0.29 0.01 0.02 56.70 0.50 0.32 0.57 26.70 25.70 0.05 36.00 0.01 0.28 0.67 26.70 25.70 0.05 34.00 0.20 11.80 1.70 12.00 48.10 7.02 11.80 1.70 12.00 49.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 1
T3-L050-1 Floodplain 0.05 3.31 4.00 240.00 1.01 1.49 0.02 0.02 69.80 14.70 23.00 3.55 63.60 1.13 9.44 0.12 4.00 0.03 1.07 31.00 18.20 0.00 119.00 0.43 0.07 9.30 17.40 110.00 21.20 71.70 0.00 0.01 4.72 5.90 1.00 2.70 17.30 1.02 0.05 17.90 0.33 0.33 5.90 26.00 1.90 13.40 17.00 142.50 2.80 1.48 0.69 3.74 0.50 0.25 24.00 6.46 4.75 0.52 0.22 1.51 T3-L050-2 Floodplain 0.04 4.44 4.60 250.00 1.14 0.46 0.01 0.02 68.70 6.90 27.00 4.95 15.10 1.51 12.10 0.15 3.70 0.04 1.21 32.70 23.20 0.09 53.00 0.49 0.07 10.00 11.70 90.00 14.30 88.30 0.00 0.01 3.48 7.40 1.00 3.40 17.10 1.13 0.05 18.80 0.33 0.41 4.00 35.00 2.30 13.90 11.00 125.00 3.05 1.56 0.78 4.26 0.58 0.25 26.30 7.11 5.20 0.58 0.23 1.58
T3-R250-1 Floodplain 0.09 6.82 6.50 450.00 2.89 4.95 0.02 0.03 90.80 25.60 44.00 8.61 239.00 2.08 20.00 0.18 3.70 0.06 1.90 41.70 40.60 0.22 140.00 0.04 0.01 13.50 39.50 220.00 57.40 14.00 0.00 0.01 2.70 13.40 1.00 5.00 25.00 1.33 0.06 22.40 0.40 0.66 21.10 57.00 3.30 19.60 40.00 123.50 4.10 2.17 1.09 5.49 0.77 0.33 32.20 8.56 6.37 0.76 0.31 2.09 13-R250-2 Floodplain 0.06 6.83 5.20 460.00 2.54 1.02 0.01 0.02 87.60 9.75 0.00 0.10 0.10 2.92 0.53 0.01 0.02 87.60 9.75 0.02 1.00 0.18 4.10 0.07 2.03 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.7 2.03 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.72 0.33 45.00 9.34 19.40 2.39 20.40 0.18 41.00 0.00 0.01 3.80 151.50 0.00 0.01 3.80 14.30 0.59 24.80 14.30 0.59 24.80 0.45 0.68 5.20 5.70 3.60 19.10 19.00 139.50 4.12 2.13 1.06 5.41 0.75 0.32 23.50 8.74 6.47 0.75 0.32 23.50 8.74 6.
T3-R500-1 Floodplain 0.03 5.79 4.80 350.00 1.02 92.40 0.13 4.70 15.20 1.00 0.17 1.00 1.02 92.40 0.16 5.17 4.20 0.05 1.53 83.00 350.00 1.43 0.05 23.80 0.45 0.54 5.10 1.00 1.02 92.40 1.71 1.00 1.02 92.40 0.16 1.00 1.02 92.40 1.71 1.00 1.02 92.40 1.71 1.00 1.00 1.00 1.00 1.00 1.00 1.0
T3-R500-3 Floodplain 0.05 8.81 13.90 440.00 2.70 0.64 0.01 0.02 70.30 10.80 65.00 11.50 22.80 5.02 26.10 0.20 4.30 0.08 1.88 34.00 56.80 0.20 52.00 1.27 0.09 15.60 28.70 12.00 0.00 0.01 2.42 15.00 2.00 6.10 22.00 1.52 0.05 24.00 0.46 0.77 8.60 92.00 3.80 17.30 15.00 143.50 3.63 1.99 0.89 4.59 0.69 0.34 27.80 7.40 5.43 0.65 0.30 2.08 13.80 17.30 15.00 143.50 3.60 129.50 2.77 1.45 0.74 3.86 0.50 0.22 24.00 6.54 4.77 0.53 0.20 1.43 15.90 1.43 15.90 1.40 0.28 0.43 15.90 15.00 143.50 36.00 129.50 2.77 1.45 0.74 3.86 0.50 0.22 24.00 6.54 4.77 0.53 0.20 1.43 15.90 1.43 15.90 1
T3-R050-2 Floodplain 0.04 2.40 2.50 170.00 0.82 0.47 0.01 0.02 50.80 8.00 14.00 2.77 33.70 0.83 6.28 0.12 33.0 0.02 0.81 23.20 16.60 0.07 127.00 0.22 0.06 5.40 8.00 90.00 11.30 6.70 0.00 0.01 3.28 3.90 1.00 1.90 11.30 0.73 0.05 12.90 0.18 0.24 2.80 17.00 1.30 0.80 12.00 11.35 1.90 1.00 0.52 2.83 0.35 0.16 18.50 4.98 3.66 0.36 0.15 1.00 1.73 1.73 1.73 1.74 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75
T4-L250-2 Floodplain 0.25 7.13 6.50 550.00 3.09 2.50 0.07 0.15 105.50 75.00 49.00 9.63 208.00 2.77 21.60 0.17 3.20 0.06 1.87 52.50 42.30 0.27 860.00 0.56 0.10 12.00 65.50 540.00 4.43 160.00 0.00 0.02 1.05 13.50 2.00 4.00 65.50 540.00 4.00 14.10 56.00 2.50 22.60 121.00 114.00 4.68 2.32 1.26 6.35 0.84 0.36 40.70 10.75 7.76 0.83 0.33 2.21 174-L250-3 Floodplain 0.13 6.68 5.50 480.00 3.08 1.18 0.08 0.05 107.50 30.80 46.00 9.07 85.00 2.68 19.60 0.18 3.70 0.06 1.83 51.30 40.40 0.26 678.00 0.52 0.11 12.70 34.10 42.00 30.90 159.50 0.00 0.01 3.15 12.50 1.00 4.40 27.60 1.19 0.05 23.50 0.36 0.72 8.70 54.00 2.60 21.90 69.00 121.50 4.56 2.36 1.20 6.14 0.83 0.36 37.90 10.15 7.39 0.83 0.33 2.25
T4-R250-1 Floodplain 0.03 4.06 3.50 230.00 1.02 0.44 0.01 0.02 68.30 6.10 29.00 4.60 16.50 1.42 12.50 0.14 3.20 0.03 0.96 34.00 19.60 0.09 68.00 0.54 0.05 11.60 13.30 70.00 16.60 81.10 0.00 0.01 0.85 7.50 1.00 2.60 13.90 1.07 0.05 21.80 0.39 0.44 3.90 34.00 1.70 14.70 9.00 121.00 2.91 1.54 0.72 3.68 0.55 0.26 25.10 6.82 4.78 0.51 0.23 1.56 12.70 12.80 12.90
T4-L500-1 Floodplain 0.03 2.04 11.00 80.00 0.62 0.26 0.01 0.02 27.30 7.50 8.00 1.02 27.30 7.50 8.00 1.00 1.02 27.30 7.50 8.00 1.00 1.02 27.30 7.50 8.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
T4-R500-1 Floodplain 0.02 3.32 2.00 260.00 1.12 0.48 0.01 0.02 65.60 4.30 29.00 4.71 11.00 0.84 9.90 0.10 3.90 0.03 1.04 32.70 29.30 0.09 75.00 0.27 0.06 16.30 7.40 60.00 18.90 76.10 0.00 0.01 0.81 7.80 1.09 16.30 1.57 0.05 22.40 0.53 0.40 3.70 32.00 2.60 16.80 6.00 132.00 3.12 1.80 0.78 3.90 0.61 0.31 25.90 7.18 4.98 0.57 0.27 1.89 1.79 1.70 1.89 1.70 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89
T4-R500-3 Floodplain 0.04 7.68 10.20 480.00 3.21 0.65 0.01 0.02 87.20 14.0 60.00 10.55 21.20 4.14 25.40 0.16 3.90 0.08 1.50 33.40 87.50 0.21 65.00 0.62 0.08 17.80 25.50 60.00 35.10 143.00 0.00 0.01 1.14 15.90 1.00 5.30 20.60 1.59 0.05 27.40 0.51 0.82 8.90 90.00 3.50 18.80 11.00 142.50 3.98 2.13 1.04 4.81 0.75 0.36 29.70 7.78 6.10 0.71 0.32 2.25 14-L050-1 Floodplain 0.09 3.75 4.70 340.00 1.76 0.19 0.10 3.50 18.80 11.00 142.50 3.98 2.13 1.04 4.81 0.75 0.36 29.70 7.78 6.10 0.71 0.32 2.25 14-L050-2 Floodplain 0.09 3.75 4.70 340.00 1.50 3.50 0.05 0.78 8.20 47.10 26.00 4.28 227.00 1.46 10.30 0.12 3.30 0.03 1.51 39.50 19.20 0.10 35.70 190.00 43.40 95.30 0.00 1.05 3.70 40.00 0.10 1.75 6.80 1.00 2.20 20.70 0.87 0.05 21.20 0.30 0.46 15.60 3.00 0.46 15.60 3.00 14.50 3.20 1.71 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
T4-L050-1 Floodplain 0.03 2.16 1.80 260.00 0.63 0.29 0.02 0.02 5.30 6.90 1.3
T4-R050-2 Floodplain 0.06 4.14 4.70 280.00 1.04 0.45 0.01 0.02 80.60 6.40 31.00 4.44 15.50 1.88 11.30 0.13 3.90 0.03 1.28 39.30 18.10 0.10 101.00 0.63 0.06 11.10 16.20 100.00 18.30 99.10 0.00 0.01 0.85 7.20 1.00 2.50 16.90 1.30 0.05 10.90 15.60 12.00 14.50 3.06 1.69 0.77 4.02 0.58 0.28 27.40 7.40 5.08 0.55 0.25 1.74
T5-L250-1 Floodplain 0.02 2.85 5.60 120.00 0.74 0.34 0.01 0.02 44.70 5.90 29.00 3.31 11.40 1.67 8.18 0.08 2.40 0.03 0.44 21.70 20.00 0.06 5.70 0.54 0.02 7.50 11.30 70.00 11.70 44.80 0.00 0.01 0.54 5.10 1.00 1.80 7.60 0.74 0.05 14.70 0.25 0.25 2.90 31.00 1.20 9.90 6.00 79.80 2.03 1.04 0.59 2.71 0.38 0.17 19.40 5.20 3.85 0.36 0.15 1.06 1.75-L250-2 Floodplain 0.02 3.46 5.60 130.00 0.89 0.32 0.10 0.02 46.50 7.30 54.00 4.44 16.50 5.31 13.15 0.11 2.50 0.04 0.57 2.250 26.30 0.08 42.00 1.00 1.01 0.70 0.24 0.80 0.79 0.01 0.70 0.24 0.32 6.80 84.00 1.40 10.70 8.00 82.90 1.90 1.21 10.61 9.92 7.7 0.40 0.20 19.80 5.43 3.82 0.38 0.17 12.00
T5-L500-1 Floodplain 0.03 3.72 1.70 180.00 0.99 0.38 0.01 0.02 53.30 6.50 27.00 5.23 17.00 0.69 10.15 0.08 3.20 0.03 0.65 27.00 26.80 0.08 75.00 0.27 0.04 10.70 11.60 70.00 12.90 54.20 0.00 0.01 0.73 6.60 1.00 2.60 10.60 1.02 0.38 0.33 3.00 25.00 1.70 13.20 7.00 114.50 2.42 1.33 0.66 3.23 0.49 0.22 21.70 5.93 4.29 0.44 0.20 1.36 T5-L500-2 Floodplain 0.04 5.78 2.10 260.00 1.43 0.46 0.01 0.02 55.80 9.30 35.00 8.33 13.90 0.87 16.55 0.09 3.50 0.05 0.96 29.90 44.50 0.11 48.00 0.23 0.05 13.00 18.80 60.00 19.70 85.30 0.00 0.01 0.95 10.20 1.00 4.00 13.40 1.49 0.05 21.30 0.44 0.55 3.30 40.00 2.50 14.30 9.00 116.50 2.76 1.57 0.72 3.48 0.54 0.26 22.80 6.27 4.43 0.49 0.23 1.60
T5-L500-3 Floodplain 0.02 6.38 9.00 290.00 1.83 0.52 0.01 0.02 64.90 11.00 44.00 9.59 17.30 2.25 19.05 0.12 3.60 0.06 1.04 55.40 0.24 1.68 175-L050-2 Floodplain 0.02 6.38 9.00 290.00 1.32 0.63 5.07 0.27 0.69 0.00 0.01 0.47 12.00 1.09 0.48 0.00 0.01 0.47 12.00 1.09 0.5 24.00 0.44 0.60 4.30 69.00 2.70 16.20 9.00 123.50 2.97 1.69 0.80 3.80 0.57 0.27 26.20 7.20 4.94 0.54 0.24 1.68 175-L050-2 Floodplain 0.06 3.85 3.70 320.00 1.32 0.45 0.02 0.03 85.70 7.70 26.00 4.51 17.90 1.56 10.85 0.11 4.00 0.03 1.43 38.40 20.10 0.12 149.00 0.35 0.09 9.80 0.00 0.01 0.47 12.00 1.09 0.05 24.30 0.31 0.45 5.60 25.00 1.50 15.00 15.00 1.50 15.00 1.50 15.00 1.50 1.60 0.35 0.29 1.69 0.80 3.80 0.57 0.27 26.20 7.20 4.94 0.70 0.54 0.24 1.68 1.68 1.68 0.67 0.59 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 1.32 0.45 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2
T5-L050-3 Floodplain 0.04 4.49 4.60 31 0.00 1.28 0.45 0.01 0.02 8.830 7.40 29.00 5.28 16.90 1.84 12.50 0.12 0.00 0.04 1.41 43.60 22.30 0.13 118.00 0.47 0.08 10.20 15.40 0.09 4.76 0.00 0.01 0.68 7.60 1.00 2.00 15.40 0.09 4.76 0.00 0.01 0.18 0.07 15.00 0.00 1.01 0.03 0.05 23.20 0.05 0.00 1.02 0.03 0.05 1.02 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.03 0.05 23.20 0.05 0.00 0.01 0.01 0.05 0.00 0.01 0.00 0.00
T6-R250-2 Floodplain 0.03 3.88 8.60 310.00 2.21 0.39 0.01 0.02 86.50 16.70 34.00 5.17 11.80 4.53 12.40 0.13 2.70 0.04 1.09 30.10 21.50 0.10 57.00 0.38 0.07 10.00 10.70 60.00 19.40 10.90 0.05 18.60 0.32 0.43 5.90 66.00 1.80 14.50 7.00 97.90 2.81 1.54 0.79 3.74 0.54 0.72 25.80 6.97 5.10 0.53 0.23 1.57 16-R500-2 Floodplain 0.04 5.70 8.80 400.00 2.44 0.45 0.01 0.02 53.60 15.30 49.00 7.76 16.70 4.42 16.20 0.13 1.00 0.61 4.52 6.00 35.80 1.00 2.47 125.50 0.00 0.11 0.21 0.80 1.00 2.50 0.50 15.00
T6-R500-2 Floodplain 0.04 5.70 8.80 40.00 2.44 0.5 0.07 1.25 0.05 0.05 1.45 0.00 2.49 0.45 0.07 1.30 0.00 2.49 0.45 0.07 1.30 0.05 0.61 0.25 0.65 0.05 1.45 0.00 2.49 1.50 0.00 0.00 0.07 1.80 0.05 0.61 0.25 0.65 0.05 0.05 0.05 0.05 0.05 0.05 0.0
T6-R050-3 Floodplain 0.05 7.40 9.10 410.00 2.37 0.72 0.01 0.02 133.00 16.10 52.00 9.66 28.10 3.34 23.30 0.15 4.60 0.07 1.98 48.50 34.30 0.19 183.00 0.56 0.08 14.90 26.80 150.00 36.10 156.00 0.00 1.16 15.40 1.00 5.00 24.30 1.40 0.05 30.50 0.44 0.84 7.70 69.00 3.10 22.70 22.00 148.50 4.30 2.50 1.19 5.66 0.86 0.41 38.90 10.90 7.40 0.80 0.36 2.52 T7-01 Tailings 0.10 5.07 32.70 380.00 3.64 1.29 0.23 0.50 150.50 201.00 224.00 1.51 2680.00 12.00 1
T7-02 Tailings 0.13 5.28 87.30 2930.00 4.79 3.07 0.06 0.10 260.00 147.50 76.00 2.69 587.00 13.30 18.70 0.18 2.80 0.22 1.01 64.50 26.60 0.24 16150.00 4.25 0.05 6.80 152.00 470.00 75.20 77.30 0.00 0.02 1.34 11.10 1.00 1.90 30.50 0.58 0.16 34.90 0.19 2.55 23.20 159.00 2.02 1.00 24.00 89.40 4.30 2.47 1.23 5.42 0.85 0.43 39.20 12.05 7.20 0.82 0.36 2.62 77.03 7.00 17.00
T7-05 Tailings 0.11 6.50 25.30 600.00 3.01 3.42 0.14 0.03 103.50 33.70 74.00 4.71 733.00 6.25 20.50 0.11 3.20 0.07 1.13 46.10 27.70 0.31 1080.00 2.41 0.05 9.10 61.90 2170.00 81.20 101.00 0.00 0.10 1.39 13.00 1.00 2.60 18.50 0.79 0.20 44.30 0.31 0.68 170.00 84.00 1.90 17.70 20.00 105.50 3.54 1.91 0.98 4.50 0.68 0.30 28.00 8.36 5.52 0.66 0.27 1.89 17-06 Tailings 0.10 8.52 6.80 800.00 4.64 0.71 0.06 0.13 36.90 65.10 46.00 6.17 138.00 13.35 25.30 0.32 2.80 0.45 0.44 35.40 66.10 0.24 14400.00 3.50 0.03 7.90 263.00 250.00 18.70 67.10 0.00 0.07 1.14 12.20 1.00 3.30 15.30 0.69 0.08 19.80 0.27 0.64 39.20 59.00 1.60 27.00 36.00 95.60 5.64 3.22 1.48 6.94 1.13 0.45 36.10 9.60 7.33 1.00 0.43 2.79
T7-07 Control 0.01 2.58 1.70 250.00 0.62 0.17 0.02 0.02 14.35 5.50 9.00 0.44 60.20 0.77 6.79 0.05 1.00 0.01 2.65 6.60 1.70 0.02 13.00 0.65 0.17 0.02 0.03 13.00 0.65 0.17 0.02 0.03 0.58 3.60 16.00 0.40 3.30 6.00 27.80 0.53 0.37 0.10 0.55 0.11 0.08 3.70 1.17 0.65 0.09 0.05 0.09 0.06 0.45 0.77 0.00 0.00 0.01 0.17 0.80 0.00 0.01 0.17 0.80 0.00 0.01 0.17 0.80 0.00 0.01 0.17 0.80 0.00 0.01 0.17 0.80 0.00 0.01 0.18 0.00 0.01 0.00 0.01 0.00 0.00
T7-10 Control 0.01 2.08 1.50 24.00 0.03 0.17 0.01 0.02 12.07 0.01 0.03 0.63 0.17 0.01 0.02 12.07 0.05 0.04 0.83 0.01 2.98 6.50 1.50 0.03 98.00 0.71 0.01 0.02 15.57 5.40 9.34 0.45 80.00 18.70 4.00 0.01 0.10 0.10 0.10 0.10 0.10 0.1