Ecological assessment of the Adelaide River catchment

Document title	Ecological assessment of the Adelaide River catchment
Contact details	Department of Lands, Planning and Environment Water Resources Division, <u>waterresources@nt.gov.au</u>
Approved by	Executive Director Water Resources
Date approved	March 2025
TRM number	42-D25-13653

Water Resources Division Department of Lands, Planning and Environment PO Box 496 PALMERSTON NT 0831

© Northern Territory of Australia, 2025

Report No: 13/2025 ISBN: 978-1-74350-472-7

To cite this report:

Dostine, P.L.¹, Wedd, D.², Perna, C.³, Hammer, M.P.⁴, Waugh, P.S.⁵ and Tingle, X.⁵ (2025). Ecological assessment of the Adelaide River catchment. Technical Report 13/2025. Department of Lands, Planning and Environment, Northern Territory Government, Darwin, Australia.

Author affiliation:

¹ Flora and Fauna Division, Department of Lands, Planning and Environment

²NSW Department of Primary Industry and Regional Development, Freshwater Environmental Research, Grafton Fisheries Centre, Trenayr NSW, 2460

³Owner, E-fish, ABN 15652830295, Darwin, NT, Australia e: <u>coltonperna@gmail.com</u>

⁴Curator of Fishes, Museum and Art Gallery of the Northern Territory

⁵ Water Resources Division, Department of Lands, Planning and Environment

Acknowledgements:

We gratefully acknowledge the generous assistance of the land owners and managers, organisations and individuals who aided and facilitated this research. Permission to access Aboriginal Land Trust areas was granted by the Northern Land Council.

You are licensed to use this publication on the terms and conditions set out in: Creative Commons Attribution 4.0 International Public License (CC BY 4.0) at: <u>https://creativecommons.org/licenses/by/4.0/legalcode</u>

If you do not agree to the terms and conditions you must not use this publication.

You are free to copy, communicate and adapt the licensed material, provided that you abide by the licence terms (including Attribution) and attribute the licensed material using the statement:

Supplied by the Department of Lands, Planning and Environment. © Northern Territory Government.

Acronyms

Acronym	Full form
CR	critically endangered
DNA	deoxyribonucleic acid
eDNA	environmental DNA
EN	endangered
EPBCA	Environment Protection and Biodiversity Conservation Act 1999
GL	gigalitre
ha	hectare
IUCN	International Union for Conservation of Nature
km	kilometre
km ²	square kilometre
m	metre
m³/s	cubic meter per second
mm	millimetre
MAGNT	Museum and Art Gallery of the Northern Territory
mAHD	metres above Australian Height Datum
NT	Northern Territory
OTU	operational taxonomic unit
PCR	polymerase chain reaction
pН	potential of hydrogen
ppt	parts per thousand
qPCR	quantitative polymerase chain reaction
rRNA	ribosomal ribonucleic acid
TPWCA	Territory Parks and Wildlife Conservation Act 1976
μS/cm	microSiemens per centimetre
μm	micrometre
VU	vulnerable

Sites as identified in appendix 1

Acronym	Full form
AGLN	Acacia Gap Lagoon
ARBR	Adelaide River Bridge Riffle
ARDD	Adelaide River, Dot and Dash
AR01	Adelaide River site 1
AR03	Adelaide River site 3
AULD	Auld's Lagoon
BHRF	Beatrice Hill Research Farm
ВТСК	Beatrice Creek
СМСК	Coomalie Creek
DDRF	Dot and Dash Riffle
DLDD	Dash Lagoon
DNLG	Donald's Lagoon
DRRD	Daly River Road Crossing
KSCK	Kaissis Creek
MKBB	Mt Keppler Billabong
MKXG	Marrakai Crossing
MRJN	Margaret River junction
STRD	Strickland Road

Table of contents

1. Executive summary	7
2. Introduction	8
2.1. Background	8
2.2. Objectives	8
2.3. Study area	9
2.3.1. Climate and rainfall	11
2.3.2. Land use and conservation areas	11
2.3.3. Hydrology	11
2.4. Floodplain function	
2.5. General methods	
2.6. Limitations of this study	15
3. Composition of vertebrate fauna	
3.1. Vertebrate species	
3.2. Fish species of freshwater and tidal freshwater	
3.3. Aquatic and semiaquatic reptiles	24
3.4. Threatened species	24
4. Review of ecological assets	
4.1. Magpie goose	
4.2. Migratory shorebirds	
4.3. Colonial breeding waterbirds	
4.3.1. Confirmed colonies	
4.3.2. Unconfirmed or historical colonies	
4.4. Euryhaline elasmobranchs	
4.5. Tidal freshwater fish	
4.6. Migratory aquatic species	41
4.6.1. Barramundi	41
4.6.2. Cherabin	41
4.6.3. Sooty grunter	42
4.7. Saltwater crocodile	
4.8. Water python and dusky rat	
4.9. Frogs	
4.10. Monsoon rainforest	
5. Spatial variation in water quality	
5.1. Methods	46
5.2. Results	
6. Spatial variation in aquatic biodiversity	
6.1. Introduction	

6.2. Methods	
6.2.1. Study design	
6.2.2. Sampling methods	
6.2.3. Specimen identification and taxonomy	
6.2.4. Data analysis	
6.3. Results	
6.3.1. Adequacy of sampling	
6.3.2. Composition of sampled fauna	
6.3.2.1. Fish	
6.3.2.2. Aquatic and semiaquatic reptiles	
6.3.2.3. Decapod crustacea	
6.3.3. Spatial patterns of species richness	
6.3.4. Spatial patterns of abundance	
6.3.5. Multivariate analyses of spatial variation	77
6.4. Discussion	
7. Environmental DNA	
7.1. Introduction	
7.2. Methods	
7.3. Results	
7.3.1. qPCR bioassay for largetooth sawfish	
7.3.2. Comparison of eDNA collection method	
7.4. Discussion	
8. Summary	
8.1. Composition of vertebrate fauna	
8.2. Review of ecological assets	
8.3. Spatial variation in water quality	
8.4. Spatial variation in aquatic biodiversity	
8.5. Environmental DNA	
9. Conclusions	
9.1. Recommendations for research and monitoring	
9.1.1. Research	
9.1.2. Monitoring	
9.2. Knowledge gaps	
10. References	
11. Appendices	
11.1. Appendix 1 – Site summaries	
11.2. Appendix 2 - List of aquatic species	
11.3. Appendix 3 – Occurrence of aquatic species by site	

1. Executive summary

This study sought to document the ecological assets of the Adelaide River catchment through a review of existing data and information, and by undertaking a field study of the composition of the freshwater vertebrate fauna at representative sites.

The confluence of the Adelaide and Margaret River marks the boundary of the Adelaide River floodplain system: a diverse mosaic of wetland habitats which support ecological assets of national and international significance. The floodplain system is recognised as a site of conservation significance in the Northern Territory (NT) and is listed in the Directory of important wetlands in Australia.

The Adelaide River floodplain system provides a major breeding area for magpie goose Anseranas semipalmata, saltwater crocodile Crocodylus porosus, and herons and allies. It is a major dry season refuge for waterbirds, and it is a significant migration stop over for shorebirds.

Analysis of the Flora and Fauna Division species database identified 171,758 individual records comprised of 588 vertebrate species in the Adelaide River catchment. Fish species are poorly represented in the database and comprised 0.5% of the total number of records. There are records of 30 threatened vertebrate species, and 15 threatened aquatic vertebrates. These include six migratory shorebird species, three elasmobranch species, three varanids, a burrowing frog, and an elapid snake.

There are long-term species management programs for magpie goose and saltwater crocodile. Aerial surveys to estimate goose populations have been conducted since 1983. Since 2011 surveys have been conducted using a consistent methodology across floodplains of the Top End, including on the Adelaide River floodplain. The Adelaide River floodplain supports about 8% of the Top End magpie goose population. The spatial distribution of this species varies within and among floodplain systems. Large scale water extraction may alter the frequency and duration of floodplain inundation, and adversely impact magpie goose habitat.

Surveys conducted between 1990 and 1999 identified three active waterbird breeding colonies and four unconfirmed or historical colonies. Colony W025 (Chatto 2000) may represent the largest, regular egret colony in Australia, with ten breeding species and use by up to 30,000 birds. There are no recent data on colony status or size.

There are 825 mapped patches of monsoon rainforest in the Adelaide River catchment. About 5,500 ha of rainforest (or 2% of the NT rainforest estate) occur as scattered patches mostly along the upland margin of the floodplain. Rainforest patches in proximity to the Adelaide River floodplain have been identified as one of six clusters of this habitat type required to capture rare endemic rainforest plant species.

A field survey of aquatic biodiversity was undertaken in 2024 at 18 sites in riverine channel, and off stream channel habitats from the upper reaches of the Adelaide River to the upper floodplain. Surveys detected 45 of 83 fish species known, or suspected to occur, from the freshwater and tidal freshwater reaches of the Adelaide River, seven of 18 aquatic or semiaquatic reptile species and eight decapod species.

The structure and composition of fish assemblages varied according to position in the landscape and habitat. The most diverse sites featured shallow edges with high macrophyte cover. The median number of fish species detected per site was 15, three sites featured more than 20 fish species. By contrast, a floodplain lagoon with a history of use by domestic stock, and extensive coverage of the invasive pasture grass *Hymenachne amplexicaulis* and low dissolved oxygen levels, featured 13 fish species. There were no sampling sites in the middle and lower portions of the floodplain. Further work is required to systematically sample fish assemblages in these habitats.

The tidal freshwater reach from the tidal limit at Marrakai Crossing to the confluence of Beatrice Creek features low salinity levels for most of the dry season, and purportedly supports a distinctive but largely undocumented suite of fish species. In this study, surveys conducted at three sites in the tidal freshwater reach identified 25 fish species, ten of which were restricted to tidal freshwater. Increased salinity due to large scale water extraction may reduce habitat availability for these species.

Environmental DNA samples were collected concurrently with biodiversity surveys at 18 sites in the Adelaide River catchment. Metabarcoding analyses identified 94 operational taxonomic units (OTU's), of which 58 were identified to species level. Twenty-three of 45 fish species identified by biodiversity surveys were not detected by eDNA. Of these, eight were obligate freshwater species and 15 were euryhaline species. There were no eDNA detections of the threatened largetooth sawfish.

There are long-term datasets for several ecological assets within the Adelaide River catchment, but none specifically address the relationship between variation in flow and biodiversity assets or ecological function. To some extent, this knowledge gap can be addressed through modelling the effects of water extraction scenarios on hydrological regimes and adopting a precautionary approach. Nevertheless, there is a clear need to establish long-term monitoring programs to better understand interannual variability in ecological processes in relation to variability in flows, and to determine whether these are driven by climate or water management.

2. Introduction

2.1. Background

The water allocation plan for the Adelaide River catchment aims to guide the future management of water resources in the catchment to meet agreed environmental, economic, social and cultural outcomes. Increasing demand for consumptive water use in the catchment has the potential to disrupt natural flow regimes and the ecological function of the river and associated floodplains. This document presents an assessment of the ecological values of the Adelaide River catchment with an emphasis on the biodiversity values of aquatic systems to inform the development of a water allocation plan for the catchment.

2.2. Objectives

The ecological assessment aimed to address the following attributes:

- identification and delineation of aquatic habitats
- fish and turtle species
- aquatic macroinvertebrate species
- threatened species and their habitat, and other matters protected by legislation
- other significant or representative species and their habitat.

The report addresses these objectives as follows:

- Chapter 3 presents a description of the vertebrate fauna of the catchment, based on species records within the species database of the Flora and Fauna Division, with an emphasis on threatened species. Compositional data of the fish fauna of freshwater and tidal freshwater reaches are provided from collection-based records from the Museum and Art Gallery of the Northern Territory (MAGNT).
- Chapter 4 presents a review of ten aquatic ecological assets, defined as species or communities with high cultural or conservation value, substantial long-term monitoring data, or considered suitable for monitoring impacts of altered flow regime.

- Chapter 5 describes variation in water quality parameters collected at biodiversity survey sites. This data provides a dry season baseline for water quality and explanatory variables for analysing spatial patterns in the biota.
- Chapter 6 describes results of systematic surveys of fish, aquatic and semiaquatic reptiles, and decapod crustacea in permanent waterbodies accessible for sampling in the mid dry season.
- Chapter 7 presents data on aquatic and non-aquatic species using metabarcoding and qPCR analyses of eDNA samples collected at biodiversity survey sites.
- Chapters 8 and 9 presents a summary of key results, conclusions, and recommendations for further research and ongoing monitoring.
- Appendix 1 presents a summary of the biota and water quality of each survey site.
- Appendix 2 presents a taxonomic list of aquatic fauna species recorded by this study.
- Appendix 3 presents data on the occurrence of species by survey site.

2.3. Study area

The Adelaide River catchment lies within the Darwin Coastal Bioregion. The river traverses 355 km from headwaters south of the township of Adelaide River to the mouth in Chambers Bay. The Adelaide River drains the western side of its catchment, while its main tributary, the Margaret River, drains the eastern portion of the catchment. The catchment has low relief throughout most of its area with only a few areas up to 300 mAHD in the hills around the basin edges. The confluence of the Margaret and the Adelaide River occurs just downstream of the upper extent of tidal influence and marks the approximate upper limit of the floodplain system. The extensive floodplain system of the Adelaide River covers approximately 18% of the total area of the catchment. The floodplain system comprises a diverse mosaic of wetland habitats which support ecological assets of national and international significance.

The Adelaide River coastal floodplain is recognised as a site of conservation significance in the NT and is listed on the Directory of important wetlands in Australia (DIWA: NT020 Adelaide River floodplain system) (Figure 2). The site forms part of an aggregation of coastal floodplains with the Mary River floodplain (DIWA: NT026) in the northeast.

Criteria for listing the site include:

- it is a wetland that plays an important ecological or hydrological role in the natural functioning of a major wetland system or complex
- it is a wetland that is important as the habitat for animal taxa at a vulnerable stage in their life cycle or provides a refuge when adverse conditions such as drought, prevail
- the wetland supports 1% or more of the national populations of any native plant or animal taxa
- the wetland supports native plant or animal taxa or communities that are considered endangered or vulnerable at the national level
- the wetland is of outstanding historical or cultural significance.

The Adelaide River floodplain system supports examples of 11 wetland types recognised by the ANZECC Wetlands Network (Table 1).

А	Marine and coastal zone wetlands
A6	Estuarine waters: permanent waters of estuaries and estuarine systems of deltas
A7	Intertidal mud, sand or salt flats
A8	Intertidal marshes: includes saltmarshes, salt meadows, saltings, raised salt marshes, tidal brackish and freshwater marshes
A9	Intertidal forested wetlands: includes mangrove swamps, nipa swamps, tidal freshwater swamp forests
В	Inland wetlands
B1	Permanent river and streams; includes waterfalls
B4	Riverine floodplains: includes river flats, flooded river basins, seasonally flooded grassland, savanna and palm savanna
B6	Seasonal/intermittent freshwater lakes (>8 ha), floodplain lakes
B9	Permanent freshwater ponds
B10	Seasonal/intermittent freshwater ponds and marshes on inorganic soils, includes sloughs, potholes; seasonally flooded meadows, sedge marshes
B14	Freshwater swamp forest; seasonally flooded forest. Wooded swamps; on inorganic soils
С	Human made wetlands
C1	Water storage areas; reservoirs, barrages, hydro-electric dams, impoundments (generally >8 ha)

Table 1. Wetland types present on the Adelaide River floodplain system.

The Adelaide River floodplain system occupies an area of 134,800 ha and includes the entire floodplain of the Adelaide River from near the junction of the Margaret River downstream to the river mouth, mangrove swamps at the base of Cape Hotham peninsula, and intertidal mudflats. Large floodplain wetlands within the site include Lake Finniss, Melacca and Black Jungle Swamps, the artificial Fogg and Harrison Dams, and Tommy Policeman, Lambell's and Beatrice Lagoons.

There are four primary plant formations:

- 1. mangal low closed-forest
- 2. scattered chenopod low shrubland
- 3. patches of Melaeuca open-forest near the floodplain edge
- 4. mixed grassland/sedgeland (seasonal floodplain).

Patches of closed-forest monsoon vine thicket occur at the edges (Jaensch 1993). About 5,500 ha of rainforest (or 2% of the NT rainforest estate) occur as scattered patches mostly along the upland margin of the floodplain. Rainforests in proximity to the Adelaide River floodplain were identified as one of six clusters of rainforest patches required to capture NT rare endemic rainforest plant species (Price 1998).

Vegetation patterning on coastal floodplains, including the Adelaide River floodplain, has been described using census plots in a 2.5 km grid (Wilson *et al.* 1991). The study recognised 24 floristic groups based on herbaceous vegetation. Most of these groups were associated with distinct salinity and water depth regimes, and were divided into three broad groupings, namely saline/semi-saline, dry freshwater, and wet freshwater (Cowie *et al.* 2000). There are at least 13 discrete land unit or land resource mapping products within the catchment (Table 2). Land units are based on soil, vegetation and landform attributes.

No.	Dataset code	Reference	Dataset name
1	MARRV_25	Fogarty (1980)	Land Resources Marrakai Area
2	DARAS_50	Hill and Edmeades (2008)	Acid Sulfate Soils Darwin Region
3	CPHD_50	Anon (2006)	Land Resources Coastal Plains-Humpty Doo
4	GTRDW_25	Fogarty, Howe and Dunlop (1979)	Land Resources Greater Darwin Area
5	GTDLS_50	Anon (2013)	Land Suitability in the Greater Darwin region
6	WARRA_50	Olsen (1985)	Land Resources Warrai Catchment
7	MTBUN_25	Forster and Fogarty (1975)	Land Units Mount Bundy Station
8	MTRIN_25	Van Cuylenburg and Czachorowski (1978)	Land Resources of Mt Ringwood Station
9	UARES_10	Forster and Fogarty (1975)	Land Units Upper Adelaide River Area
10	COOMP_25	Robinson, Forster and Van Cuylenberg (1972)	Land Resources Coomalie Creek Area
11	WN_50	Laity and Day (1971)	Land Units Woolner Area
12	PLAIN_50	Fett and Haddon (1993)	Land Resources Adelaide-Mary River Floodplain
13	CPMARY_50	Anon (2006)	Land Resources Coastal Plains- Mary River

Table 2. Map product datasets within the Adelaide River catchment.

2.3.1. Climate and rainfall

Median and mean annual rainfall at Middle Point research station are approximately 1,405 and 1,380 mm, mostly falling in December to March.

2.3.2. Land use and conservation areas

Approximately half of the Adelaide River floodplain is pastoral leasehold land, encompassing two pastoral properties (Woolner and Koolpinyah), about 10% is Crown leasehold land and 25% managed as conservation reserves. A number of discontinuous conservation reserves occur within the site including: Adelaide River Foreshore Conservation Area (2 km²), Black Jungle/Lambell's Lagoon Conservation Reserve (40 km²), Djukbinj National Park (325 km²), Fogg Dam Conservation Reserve (18 km²), Harrison Dam Conservation Area (33 km²), and Melacca Swamp Conservation Area (23 km²) (Figure 3). Substantial changes have occurred on the northern wetlands since European settlement from the impact of large numbers of feral buffalo (Story 1969, Messel *et al.* 1979, Fogarty 1982) and the spread of invasive shrubs and pasture grasses (Fogarty 1982, Ferdinands *et al.* 2005).

2.3.3. Hydrology

The catchment of the Adelaide River covers an area of approximately 7,445 km², and spans 335 km from headwater reaches south of the Adelaide River township to the mouth. The catchment falls within the wet-dry tropics, under the Köppen climate classification of Tropical Savannah. Median annual rainfall across the catchment is approximately 1,500 mm, with a slight rainfall gradient increasing to the north, however rainfall is highly variable from year to year. Almost all rain falls within the northern summer between October and April with December to March being the wettest months. Evapotranspiration exceeds rainfall from April to November.

The Adelaide River drains the western side of its catchment, while its main tributary, the Margaret River, drains the southern and eastern parts of the catchment. The catchment has generally low relief throughout most of its area. Of its 175 km north-south extent, much of the northern 100 km remains below 10 mAHD. Elevations remain below 50 mAHD for most of the catchment area north of Adelaide River Township, with only a few areas of higher elevation up to 300 mAHD in the foothills mostly found around the basin edges.

The Adelaide River is macrotidal, with daily tidal variations at the river mouth typically exceeding 4.0 m and exceeding 6.0 m during spring tides. Tidal influence extends 150 km upstream of the mouth (river length), passing through an extensive coastal and alluvial floodplain reaching 100 km inland. The Margaret River confluence with the Adelaide River occurs just downstream of the upper extent of tidal influence.

Streamflow is dominated by wet season runoff, with over 99% of total discharge from the upper catchment into the tidal reaches occurring during the wet season months. Groundwater discharges from the regional Tindal Limestone aquifer into headwater tributaries of the Adelaide River allow perennial flows in the Adelaide River East Branch down to Adelaide River Township in most years, while Coomalie Creek also flows perennially due to discharges from the Coomalie Dolostone and Whites formation. Other groundwater contributions from localised aquifers contribute to delayed flows in Manton River and Burrell Creek however these typically cease flowing late in the dry season. The primary Adelaide River channel flows perennially to its tidal reaches after large wet seasons, about 40% of the time, but otherwise ceases flowing by November. The Margaret River ceases flowing throughout its catchment by July every year, demonstrating no significant delayed discharges from surface or groundwater storages. Perennial pools persist throughout the dry season along the primary channels of the Adelaide River and in some locations along the Margaret River, protected by shading from riparian vegetation and high primary banks and possibly maintained by minor inflows from localised groundwater storages.

During the wet season, moderate and high flows spill from the primary channels of the Adelaide and Margaret Rivers to inundate large seasonal wetland areas upstream of the tidal reaches. A natural constriction immediately downstream of the Margaret River confluence regulates discharges from the upper catchment onto the coastal floodplain, allowing development of a large alluvial floodplain in the non-tidal reaches of the Adelaide and Margaret Rivers. As the wet season recedes, an extensive system of waterholes on the floodplain retain water later into the dry season and some larger waterholes may retain water perennially.

On average, 1,738 GL is discharged from the upper catchment to the tidal reaches every year, however records vary from 319 GL (1990) to 5067 GL (2011). Peak discharges may exceed 3,500 m³/s. Modelled estimates of total catchment discharge including the tidal reaches average 2,693 GL per year (Petheram *et al.* 2018), of which 40% is derived from the ungauged portions of the catchment incorporating the tidal reaches and coastal floodplain. The lower (tidal) reaches of the Adelaide River catchment contains extensive coastal and alluvial floodplains covering an area of approximately 1,300 km². Vast seasonally and permanently inundated wetland systems occur within the floodplain, hosting a mosaic of diverse wetland habitats including tidal flats, swamps and mangroves considered to be of outstanding cultural and ecological significance (Close *et al.* 2012, Petheram *et al.* 2018).

High flows during the wet season expel saline water from the tidal reaches to the river mouth. As flooding recedes, macrotidal influences push saline water into the estuary extending a saltwater wedge beneath the freshwater lens to create an extensive contact boundary. As the dry season progresses and freshwater inflows reduce, the freshwater and saline water become well mixed creating a saline brackish freshwater gradient heading upstream from the river mouth. Saline water continues to replace fresh water lost from the upper estuary due to evapotranspiration, extending the saline gradient further into the estuary until wet season storms generate sufficient flows to commence flushing of the estuary with fresh water. The tidal hydrodynamics of the Adelaide River differ markedly from other northern macrotidal rivers including the South Alligator and Daly Rivers (Vertessy 1990). The tides at the mouths of these rivers are similar, but in the Adelaide River, there is strong tidal damping caused by a bedrock constriction a few kilometres inside the mouth. Spring tidal range at this point is reduced from 6 m to 3.5 m. Ebb/flood tide duration asymmetry is lowest for the Adelaide River. The saline water gradient extends approximately two thirds of the way up the estuary by the end of the dry season, with the upper third remaining fresh however this is likely to vary depending upon timing, magnitude and duration of wet season flows (Messel *et al.* 1979, Berra and Wedd 2017).

2.4. Floodplain function

Seasonally connected floodplains play a vital role in the function of aquatic ecosystems of naturally flowing rivers of the Top End (Douglas *et al.* 2005, Jardine *et al.* 2015, Pettit *et al.* 2017), providing food subsidies to both the aquatic and terrestrial environments (Beesley *et al.* 2021, Allen *et al.* 2024). Primary productivity from seasonally inundated floodplains underpins aquatic food webs through predictable but variable magnitude flooding and connectivity (Pusey *et al.* 2010, Jardine *et al.* 2015). Perennial wetlands (waterholes) on remnant river channels on floodplains provide refuge habitat for characteristically freshwater species that retreat from tidal reaches of the river in the dry season. Degradation of floodplains can be attributed to habitat loss and homogenisation from physical alteration of the land for agricultural development. Connectivity of floodplains to the rivers are lost or reduced when natural flows are modified for water resource development. The two afore mentioned impacts will have broad reaching implications for ecosystem function in large floodplain rivers of the Top End.

Understanding aquatic faunal distribution and community structure, and seasonal energy flows (Jardine *et al.* 2012, Pettit *et al.* 2017, O'Mara *et al.* 2024) will help to manage impacts from resource development proposals increasing in tropical Australia (Bunn and Arthington 2002). Australian freshwater fish have evolved to exploit seasonally variable water levels and energy inputs (Bunn and Arthington 2002, Baumgartner *et al.* 2014, Carpenter-Bundhoo *et al.* 2022) but planned water resource development in northern Australia may disrupt this predictable but annual natural flow regime leading to community wide impacts to species richness, community fitness and biomass (Humphries *et al.* 2020). Establishing baselines for these ecosystem attributes can be used to establish environmental management targets that will minimise impacts to freshwater fish communities. There is well established *post hoc* evidence of the impacts to unregulated water resource developments from the southern parts of the continent (Humphries *et al.* 1999, Lintermans *et al.* 2024). Removal of lateral connectivity and floodplain modification for agriculture has disrupted the flow of energy and reproductive processes of the fish in these rivers (Sharpe 2011, Koehn *et al.* 2020) and increase extinction risk as well as aiding in the proliferation of alien fish species.

2.5. General methods

This section summarises the field and analytical methods used in the studies presented in this report. Details of methods used are presented in individual chapters.

Chapter 3: Composition of vertebrate fauna

The Flora and Fauna Division species database includes species records from multiple sources, including several external agencies. Data for the Adelaide River catchment was extracted from the NT Fauna Atlas using the Adelaide River catchment boundary in Geofabric V3.2. Data on the composition of the fish fauna of the freshwater and tidal freshwater reaches were sourced from curated records of MAGNT.

Chapter 4: Review of ecological assets

This chapter presents a review of relevant literature and data for ten ecological assets for the Adelaide River catchment, defined as species or communities with high cultural or conservation value, substantial long-term monitoring data, or considered suitable for monitoring impacts of altered flow regime.

Chapter 5: Spatial variation in water quality

Surface water quality parameters were measured in the field, and water samples were collected for laboratory analysis, concurrently with the aquatic biodiversity sampling program. Data included field measurements of electrical conductivity, pH, dissolved oxygen and temperature, and laboratory measurements of total nutrients, chlorophyll *a*, ionic composition, and isotopic composition. Spatial patterns in ionic composition are presented as Piper diagrams, which show the relative dominance of anions and cations. Isotopic data can infer the influence of groundwater on a waterbody, based on differential evaporative loss of hydrogen and oxygen isotopes. There was no assessment of seasonal variation in surface water quality.

Chapter 6: Spatial variation in aquatic biodiversity

Standardised surveys of aquatic biodiversity were conducted at 18 sites in the study area over an 18 day period from 5 to 23 August 2024. Sampling sites were selected to span the range of aquatic habitats accessible for sampling in the mid-dry season. Sites were mostly located in, or adjacent to, the main channel of the Adelaide River from upstream reaches to tidal freshwater reaches. Multiple sampling methods were deployed at each site (Table 3). At most sites, sampling occurred within an 8 hour period from 08:00 to 16:00 hours. Methods included boat electro-fishing, backpack electro-fishing, gill netting, fyke netting, baited traps and cast netting (Figure 1). Most fish and all turtles were released unharmed at the site of capture. Some fish were retained as voucher specimens for further taxonomic and genetic study and general quality assurance /quality control of identifications. Voucher specimens were registered with MAGNT.

Chapter 7: Environmental DNA

Environmental DNA samples were collected at each site for metabarcoding analysis using vertebrate and decapod assays, and by qPCR for detection of largetoothed sawfish *Pristis pristis*. Samples were collected using Smith-Root DNA filters and a Smith-Root backpack sampler, or a Smith-Root citizen science sampler. At most sites, three filtered samples were collected from a moving boat at three different points in the waterbody, and a filtered control sample was collected to detect infield contamination. Samples were analysed by the commercial laboratory EnviroDNA.

Method	Target species	Effort
bait traps	small fish and decapods	10 traps
fyke nets	small, active, littoral fish	single and double wing nets
gill netting	large active fish in habitats > 3 m depth	single 4 inch multi-braid 30 m net
back-pack electro-fishing	small, cryptic fish in wade-able riffle habitat	8 shots of 150 seconds
boat electro-fishing	fish and turtles in edge habitats in large waterbodies	up to 15 shots of 90 seconds
turtle traps	primarily turtles, but some fish	5 traps
benthic sampling	decapods, small littoral fish	opportunistic

 Table 3. Sampling scheme for assessment of aquatic biodiversity in the study area.

Figure 1. Sampling methods used at study sites in the Adelaide River catchment (a) boat electro-fishing, (b) multi-filament gill net, (c) single-wing fyke net, and (d) turtle trap.

2.6. Limitations of this study

There are several limitations to this study, including the following:

- 1. Surveys were undertaken within a period of 18 days in the mid-dry season month of August and represent a snapshot of aquatic biodiversity composition and spatial pattern. There was no attempt to capture seasonal or interannual variability in composition or spatial pattern.
- 2. The survey was designed to capture the range of aquatic habitats available for sampling in the mid-dry season and focussed on habitats within and near the main river channel of the Adelaide River. Shallow swamps and ephemeral wetlands were not sampled. Further, approval to access several candidate sites could not be obtained.
- 3. The target taxa for survey included fish, aquatic reptiles and decapods, and excludes other ecological assets present in the catchment such as aquatic macrophytes, waterbirds and shorebirds, and terrestrial vertebrates.
- 4. Sites were selected from upper headwater reaches to the tidal freshwater reaches downstream of the tidal limit. There was no attempt to quantify fish assemblages of the lower estuarine reaches.

- 5. The study trialled DNA based detection of aquatic biodiversity, using assays for vertebrates and decapods, and freshwater sawfish. Further work is required to build a comprehensive, adequate reference sequence database for detection of aquatic species, and to allow discrimination of closely related taxa. Several freshwater fish species cannot be identified to species-level using the 12S vertebrate assay. These include common species in the families Melanotaeniidae and Terapontidae.
- 6. The study sought to document the composition and spatial patterning of aquatic species amongst habitat types. It does not provide information on environmental flow requirements of individual species. Such information requires targeted studies on the variability of biotic responses through time and across hydrological variability and is beyond the scope of this study. The study includes a review of relevant ecological research on ecohydrological relationships.

Figure 2. Elevation (mAHD) of Adelaide River catchment and boundary of Adelaide River floodplain site of conservation significance (SOCS).

Figure 3. Conservation areas in Adelaide River catchment.

Figure 4. Wetland categories of the Adelaide River catchment.

3. Composition of vertebrate fauna

This chapter summarises the results from an analysis of records of vertebrate species in the Adelaide River catchment extracted from the Flora and Fauna Division species database. Fish are poorly represented in the database. Data on the composition of the freshwater and tidal freshwater fish fauna is based on records from MAGNT, and given relatively limited previous sampling in the Adelaide River, expert opinion of other species known from adjacent systems that are likely to occur (e.g. Pusey *et al.* 2016). Threatened taxa include species listed under either the *Territory Parks and Wildlife Conservation Act 1976* or the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* under the threat categories vulnerable, endangered or critically endangered. Aquatic species includes all fish and frogs, and those species affiliated with aquatic habitats, including ephemeral aquatic habitats such as floodplains. It includes shorebirds which may occur on marine coastal shorelines, freshwater waterbirds, as well as species that occur in shrub habitats on drying floodplains such as the yellow chat, and species which prefer dry grasslands or bare ground on floodplains including the grass owl, little curlew and oriental pratincole.

3.1. Vertebrate species

The species record dataset for Adelaide River includes 171,758 individual records and included records of 588 vertebrate species. Of these >80% were records of bird species and <1% were records of fish species (Table 4). Two species, saltwater crocodile *Crocodylus porosus* and magpie goose *Anseranas semipalmata* comprised ~12% of the total number of records (Table 5). Both species have been intensively and systematically surveyed for several years under species management programs conducted by the Flora and Fauna Division. The distribution of species records in the Adelaide River catchment reflects the distribution of survey effort for these management programs, and the influence of the road network (Figure 5).

Taxon	No. records	% records	No. species	% species
birds	140,645	81.9	305	51.9
fish	942	0.5	77	13.1
frogs	3,556	2.1	26	4.4
mammals	9,849	5.7	67	11.4
reptiles	16,766	9.8	113	19.2
total	171,758	100	588	100

Table 4. Number of records, and percent number of records, in each vertebrate class in NT Fauna Atlas for AdelaideRiver catchment.

Table 5. Number of records, and percent number of records, of ten most frequently recorded species in NT FaunaAtlas for Adelaide River catchment.

Species name	Common name	# records	% records
Crocodylus porosus	saltwater crocodile	11,748	6.84
Anseranas semipalmata	magpie goose	8,454	4.92
Notamacropus agilis	agile wallaby	4,150	2.42
Geopelia humeralis	bar-shouldered dove	3,109	1.81
Egretta picata	pied heron	2,493	1.45
Vanellus miles	masked lapwing	2,454	1.43
Ardea plumifera	plumed egret	2,387	1.39
Merops ornatus	rainbow bee-eater	2,384	1.39
Milvus migrans	black kite	2,363	1.38
Todirhamphus macleayii	forest kingfisher	2,336	1.36

3.2. Fish species of freshwater and tidal freshwater

Table 6 presents a list of species known, or suspected, to be present in the freshwater and tidal freshwater reaches of the Adelaide River, annotated by life history, in other words, obligate freshwater, euryhaline or diadromous. Of the list of 83 species, 43 are regarded as euryhaline 51.8%; 33 as obligate freshwater 39.8%; and seven as diadromous 8.4%. Diadromous species include barramundi *Lates calcarifer*, oxeye herring *Megalops cyprinoides*, and blue catfish *Neoarius graeffei*. One species of invasive fish is known to be present, Siamese fighting fish *Betta splendens*, a relatively recent arrival (Hammer *et al.* 2019).

Table 6. List of fish species known, or suspected to be present, from freshwater and tidal freshwaters of the Adelaide River, annotated by life history.

Family	Species	Common name	Life history
Ambassidae	Ambassis elongata	elongate glassfish	euryhaline
Ambassidae	Ambassis interrupta	long-spined glassfish	euryhaline
Ambassidae	Ambassis macleayi	Macleay's glassfish	obligate freshwater
Ambassidae	Ambassis sp. NW	northwest glassfish	obligate freshwater
Ambassidae	Ambassis vachellii	Vachelli's glassfish	euryhaline
Ambassidae	Denariusa bandata	pennyfish	obligate freshwater
Anguillidae	Anguilla bicolor	Indonesian shortfin eel	diadromous
Apogonidae	Glossamia aprion	mouth almighty	obligate freshwater
Ariidae	Cinetodus froggatti	smallmouth catfish	euryhaline
Ariidae	Hemiarius dioctes	warrior catfish	euryhaline
Ariidae	Neoarius berneyi	highfin catfish	obligate freshwater
Ariidae	Neoarius graeffei	blue catfish	diadromous
Ariidae	Neoarius leptaspis	salmon catfish	euryhaline
Ariidae	Neoarius midgleyi	silver cobbler	obligate freshwater
Atherinidae	Craterocephalus mugiloides	spotted hardyhead	euryhaline
Atherinidae	Craterocephalus stercusmuscarum	fly-specked hardyhead	obligate freshwater
Belonidae	Strongylura krefftii	freshwater longtom	obligate freshwater
Carcharhinidae	Carcharhinus leucas	bull shark	euryhaline
Carcharhinidae	Glyphis garricki	northern river shark	euryhaline
Carcharhinidae	Glyphis glyphis	speartooth shark	euryhaline
Clupeidae	Nematalosa come	hairback herring	euryhaline
Clupeidae	Nematalosa erebi	bony bream	obligate freshwater
Cynoglossidae	Cynoglossus heterolepis	freshwater tongue sole	euryhaline
Dasyatidae	Urogymnus dalyensis	freshwater whipray	diadromous
Eleotridae	Bostrychus zonatus	sunset gudgeon	euryhaline
Eleotridae	Butis butis	crimsontip gudgeon	euryhaline
Eleotridae	Hypseleotris compressa	empire gudgeon	euryhaline
Eleotridae	Mogurnda mogurnda	northern purple-spotted gudgeon	obligate freshwater
Eleotridae	Oxyeleotris lineolata	sleepy cod	obligate freshwater
Eleotridae	Oxyeleotris nullipora	poreless gudgeon	obligate freshwater
Eleotridae	Oxyeleotris selheimi	giant gudgeon	obligate freshwater
Eleotridae	Prionobutis microps	smalleye gudgeon	euryhaline

Ecological assessment of the Adelaide River catchment

Family	Species	Common name	Life history
Elopidae	Elops hawaiensis	giant herring	euryhaline
Engraulidae	Thryssa brevicauda	freshwater anchovy	euryhaline
Engraulidae	Thryssa malabarica	freshwater anchovy	euryhaline
Gobiidae	Caragobius rubristriatus	worm goby	euryhaline
Gobiidae	Caragobius urolepis	worm goby	euryhaline
Gobiidae	Chlamydogobius ranunculus	tadpole goby	euryhaline
Gobiidae	Glossogobius aureus	golden flathead goby	obligate freshwater
Gobiidae	Glossogobius circumspectus	mangrove flathead goby	euryhaline
Gobiidae	Glossogobius laticeps	coastal tank goby	euryhaline
Gobiidae	Glossogobius munroi	square blotch goby	euryhaline
Gobiidae	Glossogobius nanus	dwarf goby	obligate freshwater
Gobiidae	Mugilogobius rivulus	drain mangrove goby	euryhaline
Gobiidae	Mugilogobius wilsoni	Wilson's mangrove goby	euryhaline
Gobiidae	Periophthalmus weberi	Weber's mudskipper	euryhaline
Gobiidae	Redigobius nanus	dwarf speckled goby	euryhaline
Hemiramphidae	Arrhamphus sclerolepis	snub-nosed garfish	euryhaline
Hemiramphidae	Hyporhamphus quoyi	longtail garfish	euryhaline
Kurtidae	Kurtus gulliveri	nurseryfish	euryhaline
Latidae	Lates calcarifer	barramundi	diadromous
Lutjanidae	Lutjanus argentimaculatus	mangrove jack	euryhaline
Megalopidae	Megalops cyprinoides	oxeye herring	diadromous
Melanotaeniidae	Melanotaenia exquisita	exquisite rainbowfish	obligate freshwater
Melanotaeniidae	Melanotaenia nigrans	blackbanded rainbowfish	obligate freshwater
Melanotaeniidae	Melanotaenia splendida inornata	chequered rainbowfish	obligate freshwater
Mugilidae	Planiliza ordensis	Ord River mullet	euryhaline
Oshronemidae	Betta splendens	Siamese fighting fish	obligate freshwater
Osteoglossidae	Scleropages jardinii	northern saratoga	obligate freshwater
Plotosidae	Anodontiglanis dahli	toothless catfish	obligate freshwater
Plotosidae	Neosilurus ater	black catfish	obligate freshwater
Plotosidae	Neosilurus hyrtlii	Hyrtl's catfish	obligate freshwater
Plotosidae	Porochilus obbesi	Obbes' catfish	obligate freshwater
Plotosidae	Porochilus rendahli	Rendahl's catfish	obligate freshwater
Pristidae	Pristis pristis	largetooth sawfish	diadromous
Pseudomugilidae	Pseudomugil cyanodorsalis	blueback blue-eye	euryhaline
Pseudomugilidae	Pseudomugil gertrudae	spotted blue-eye	obligate freshwater
Pseudomugilidae	Pseudomugil tenellus	delicate blue-eye	obligate freshwater
Scatophagidae	Scatophagus argus	spotted scat	euryhaline
Scatophagidae	Selenotoca multifasciata	banded scat	euryhaline
Soleidae	Brachirus selheimi	freshwater sole	euryhaline
Soleidae	Leptachirus darwinensis	Darwin sole	euryhaline
Synbranchidae	Ophisternon bengalense	one-gill eel	diadromous

Ecological assessment of the Adelaide River catchment

Family	Species	Common name	Life history
Synbranchidae	Ophisternon gutturale	swamp eel	obligate freshwater
Terapontidae	Amniataba percoides	barred grunter	obligate freshwater
Terapontidae	Hephaestus fuliginosus	sooty grunter	obligate freshwater
Terapontidae	Leiopotherapon unicolor	spangled perch	obligate freshwater
Terapontidae	Pingalla lorentzi	Lorentz's grunter	obligate freshwater
Terapontidae	Syncomistes butleri	sharpnose grunter	obligate freshwater
Toxotidae	Toxotes chatareus	sevenspot archerfish	euryhaline
Toxotidae	Toxotes lorentzi	primitive archerfish	euryhaline
Zenarchopteridae	Zenarchopterus caudovittatus	long-jaw river garfish	euryhaline
Zenarchopteridae	Zenarchopterus dispar	spoonfin river garfish	euryhaline

Figure 5. Distribution of vertebrate species records from the Adelaide River catchment from the NT Fauna Atlas.

3.3. Aquatic and semiaquatic reptiles

The species records dataset includes 18 species of aquatic and semiaquatic reptiles. Of these, 11 primarily occur in freshwater, and four primarily occur in mangrove habitats (Table 7). The dataset includes a single record of Worrell's turtle *Emydura subglobosa worrelli*, based on photographs of an individual observed at Fogg Dam.

Family	Species name	Common name	Habitat
Acrochordidae	Acrochordus arafurae	Arafura file snake	freshwater
Chelidae	Chelodina rugosa	northern snake-necked turtle	freshwater
Chelidae	Elseya flaviventralis	yellow-bellied snapping turtle	freshwater
Chelidae	Emydura subglobosa worrelli	Worrell's turtle	freshwater
Chelidae	Emydura tanybaraga	northern yellow-faced turtle	freshwater
Colubridae	Tropidonophis mairii	freshwater snake	freshwater
Crocodylidae	Crocodylus johnstoni	freshwater crocodile	freshwater
Crocodylidae	Crocodylus porosus	saltwater crocodile	freshwater/estuarine
Elapidae	Acanthophis hawkei	plains death adder	floodplain
Homalopsidae	Cerberus australis	bockadam	mangrove
Homalopsidae	Fordonia leucobalia	white-bellied mangrove snake	mangrove
Homalopsidae	Myron richardsonii	Richardson's mangrove snake	mangrove
Homalopsidae	Pseudoferania polylepis	Macleay's water snake	freshwater
Pythonidae	Liasis fuscus	water python	freshwater
Varanidae	Varanus indicus	mangrove monitor	mangrove
Varanidae	Varanus mertensi	Mertens' water monitor	freshwater
Varanidae	Varanus mitchelli	Mitchell's water monitor	freshwater
Varanidae	Varanus panoptes	yellow-spotted monitor	floodplain

 Table 7. List of aquatic and semiaquatic reptile species occurring in the Adelaide River catchment.

3.4. Threatened species

Thirty threatened vertebrate species occur in the Adelaide River catchment (Table 8). Of these, 15 are terrestrial species occurring in savanna woodland, with the remainder being aquatic or affiliated with aquatic habitats such as floodplains and marine intertidal shorelines (Table 9). The list of threatened vertebrates of aquatic habitats includes six migratory shorebird species, three elasmobranch species and three varanid species. Threatening processes for each group differ markedly. Migratory shorebirds are threatened by habitat loss and degradation at staging points on the East Asian-Australasian Flyway; elasmobranchs are threatened by commercial and recreational fishing (Kyne and Feutry 2017) and potentially by hydrological alteration; and varanid species suffer high mortality after ingestion of a toxic invasive pest, the cane toad *Rhinella marina* (Griffiths and McKay 2007). There have been no systematic surveys of any of these listed species, though much of the suitable sandplain habitat of the Howard River toadlet has been surveyed for the presence of the toadlet. Most records of threatened aquatic vertebrate species occur in the downstream reach of the Adelaide River, or in the vicinity of Fogg Dam Reserve (Figure 6).

Table 8. Threatened vertebrate species in Adelaide River catchment, showing habitat and listing under *Territory Parks and Wildlife Conservation Act* 1976 (TPWCA) and *Environment Protection and Biodiversity Conservation Act* 1999 (EPBCA). Categories: vulnerable (VU), endangered (EN) or critically endangered (CR).

Species name	Common name	Taxon	TPWCA	EPBCA	Habitat
Calidris canutus	red knot	birds	EN	EN	marine shoreline
Calidris ferruginea	curlew sandpiper	birds	CR	CR	marine shoreline
Calidris tenuirostris	great knot	birds	CR	CR	marine shoreline
Anarhynchus leschenaultii	greater sand plover	birds	VU	VU	marine shoreline
Anarhynchus mongolus	Siberian sand plover	birds	EN	EN	marine shoreline
Epthianura crocea tunneyi	yellow chat	birds	EN	EN	floodplain
Chloebia gouldiae	Gouldian finch	birds	VU	EN	savanna woodland
Numenius madagascariensis	far eastern curlew	birds	CR	CR	marine shoreline
Erythrotriorchis radiatus	red goshawk	birds	VU	EN	savanna woodland
Falco hypoleucos	grey falcon	birds	VU	VU	savanna woodland
Geophaps smithii smithii	partridge pigeon	birds	VU	VU	savanna woodland
Tyto novaehollandiae kimberli	masked owl	birds	VU	VU	savanna woodland
Glyphis garricki	northern river shark	fish	EN	EN	euryhaline
Glyphis glyphis	speartooth shark	fish	VU	CR	euryhaline
Pristis pristis	largetooth sawfish	fish	VU	VU	euryhaline
Uperoleia daviesae	Howard River toadlet	frogs	VU	VU	sand-sheet heath
Antechinus bellus	fawn antechinus	mammals	EN	VU	savanna woodland
Conilurus penicillatus	brush-tailed rabbit-rat	mammals	EN	VU	savanna woodland
Dasyurus hallucatus	northern quoll	mammals	CR	EN	savanna woodland
Macroderma gigas	ghost bat	mammals	NT	VU	savanna woodland
Mesembriomys gouldii gouldii	black-footed tree-rat	mammals	EN	EN	savanna woodland
Mesembriomys macrurus	golden-backed tree-rat	mammals	CR	Not listed	savanna woodland
Petrogale concinna canescens	nabarlek	mammals	EN	EN	savanna woodland
Phascogale pirata	northern brush-tailed phascogale	mammals	EN	VU	savanna woodland
Rattus tunneyi	pale field-rat	mammals	VU	Not listed	savanna woodland
Trichosurus vulpecula arnhemensis	common brush-tailed possum	mammals	NT	VU	savanna woodland
Acanthophis hawkei	plains death adder	reptiles	VU	VU	floodplain
Varanus mertensi	Mertens' water monitor	reptiles	VU	EN	freshwater
Varanus mitchelli	Mitchell's water monitor	reptiles	VU	CR	freshwater
Varanus panoptes	yellow-spotted monitor	reptiles	VU	Not listed	floodplain

	Terrestrial	errestrial Aquatic or with aquatic affiliation				
Taxon	Savanna woodland	Marine shoreline	Euryhaline	Freshwater	Floodplain	Sandsheet heath
birds	5	6			1	
fish			3			
frogs						1
mammals	10					
reptiles				2	2	
total	15	6	3	2	3	1

 Table 9. Number of species by habitat for threatened vertebrates in NT Fauna Atlas for Adelaide River catchment.

Plains death adder Acanthophis hawkei (137 records)

The plains death adder has a disjunct distribution, it is found on cracking soil plains of the Mitchell Grass Downs of western Queensland and the Barkly Tableland in the NT, and on coastal floodplains in the Darwin region. Prey consists predominantly of frogs, reptiles and rodents. Threats include toxic poisoning by cane toads.

Red knot Calidris canutus (6 records)

The red knot is a migratory visitor to shorelines in northwestern Australia and southeastern Australia and New Zealand after breeding in high arctic areas. Classified as endangered in Australia, with decline due to habitat loss, particularly in East Asia's Bohai Bay, China.

Curlew sandpiper Calidris ferruginea (36 records)

The curlew sandpiper is a small to medium size migratory shorebird that breeds in central and eastern Siberia and migrates annually along the East Asian-Australasian Flyway to overwinter in Africa, Southern Asia and Australasia. They are widely distributed in Australia during the non-breeding season in both coastal and inland areas. Key threatening processes include habitat loss and degradation, coastal development, invasive plant species and changes in hydrological processes.

Great knot Calidris tenuirostris (14 records)

The great knot is a migratory shorebird that breeds in northeast Siberia and northeast Russia and migrates along the East Asia-Australasian Flyway to overwinter in the southern hemisphere. In the NT the species has been recorded in most coastal areas and is rarely recorded far inland from the coast. In Australia, threats to the species include habitat decline and loss due to pollution, invasive plant and mangrove encroachment, human disturbance and changes to hydrological processes.

Greater sand plover Anarhynchus leschenaultii (9 records)

The greater sand plover is a small to medium sized shorebird which breeds in eastern and central Asia; one subspecies migrates to Australia. In Australia, it occurs along most coastlines, especially in the north, favours sandy, shelly, or muddy beaches and intertidal mudflats. Habitat loss and degradation in the Yellow Sea region pose significant threats to its population, along with pollution, human disturbance, and climate change impacts.

Siberian sand plover Anarhynchus mongolus (23 records)

The Siberian sand plover is a migratory shorebird with two subspecies *Anarhynchus mongolus mongolus* and *Anarhynchus mongolus stegmanni* that occur in Australia. Both subspecies breed primarily in far eastern Siberia (Russia) and migrate along the East Asian Australasian Flyway to overwinter in East Asia, South-East Asia, New Guinea and Australia. The greatest cause of decline for the species is habitat loss and degradation of migratory staging grounds in the Yellow Sea region. In Australia, threats include ongoing human disturbance, habitat loss and degradation from pollution, changes to hydrological processes and invasive plants.

Yellow chat (Alligator Rivers) Epthianura crocea tunneyi (6 records)

The yellow chat subspecies *Ephianura crocea tunneyi* is endemic to the NT and has only been recorded in a small geographic area in the river catchments between Oenpelli and Darwin. The primary threatening processes to the species are loss and degradation of preferred floodplain habitat due to invasion by exotic plant species and vegetation change due to grazing by buffalo and cattle, altered fire regimes and wallowing and rooting by pigs.

Northern river shark Glyphis garricki (57 records)

The northern river shark occurs in the Adelaide, East Alligator and South Alligator River systems. Little is known of the species biology. It has not been recorded as occurring in coastal marine areas, suggesting that it is restricted to shallow and brackish reaches of large rivers and associated floodplains. Both G. *glyphis* and *G. garricki* are considered naturally rare, with specific habitat preferences and low reproductive rates making their populations vulnerable to habitat degradation and impacts from fishing (Kyne and Feutry 2017).

Speartooth shark Glyphis glyphis (301 records)

In the NT the speartooth shark has been recorded in the Adelaide River, South, East and West Alligator Rivers, Murganella Creek, Daly River, Wildman River, Sampan Creek, and the Roper River (Constance *et al.* 2024). The species is listed as vulnerable under the *Territory Parks and Wildlife Conservation Act* 1976 (TPWCA), critically endangered under the and *Environment Protection and Biodiversity Conservation Act* 1999 (EPBCA), and as vulnerable on the International Union for Conservation of Nature (IUCN) Red List. There have been few studies investigating the biology of *G. glyphis*. Evidence suggests that this species migrates offshore for parts of its lifecycle and feeding and migrates inshore to breed. Tracked individuals in the Adelaide River exhibited tidal-driven movement (Pillans *et al.* 2010). This species requires a minimum salinity of 2 ppt and cannot tolerate pure freshwater (D. Wedd pers. comm).

Far eastern curlew Numenius madagascariensis (26 records)

The far eastern curlew is endemic to the East Asian-Australasian Flyway, breeding in Russia, Mongolia and northeastern China, and overwintering primarily in Australia and Southeast Asia. It has been recorded along the entire NT coastline and on many offshore islands. The loss or degradation of intertidal flats and other important staging grounds within the East Asian-Australasian Flyway, and in particular, along the coast of the Yellow Sea is the greatest threat to far eastern curlew populations. Within Australia, disturbance of habitat utilized by the species for feeding and roosting poses the main threat.

Largetooth sawfish Pristis pristis (25 records)

The largetooth sawfish is listed as vulnerable under the EPBC and TPWC Acts and is listed as critically endangered on the IUCN Red List. In the NT, the species has been recorded in the Adelaide, Victoria, Daly, Alligator, Liverpool, Roper and McArthur rivers. Juveniles and sub-adults occur predominantly in rivers and estuaries, while large mature adults are found predominantly in coastal and offshore environments. Fishing, and in particular gill net fishing, has been identified as the main contributor to a rapid population decline. The Adelaide River remains a stronghold for this species; the removal of commercial fishing from the coastal flats has reduced the frequency of incidental encounters with gill nets.

Howard river toadlet Uperoleia daviesae (222 records)

The Howard River toadlet is a small burrowing frog from the family Myobatrachidae. It is endemic to the NT and is listed as vulnerable under the EPBC and TPWC Acts and endangered on the IUCN Red List. This species is found in seasonally inundated sandsheet heath. It is restricted to the Howard River, Elizabeth River, Adelaide River and Blackmore River catchments, with an extent of occurrence of approximately 824 km². The main threatening process is decline in the extent and quality of habitat due to urban development and sand mining.

Mertens' water monitor Varanus mertensi (43 records)

The Mertens' water monitor is a semiaquatic varanid; broadly distributed in coastal and inland waters across Northern Australia. Its diet consists predominantly of fish, frogs and carrion, but insects and small terrestrial vertebrates are also consumed. The cane toad, *Rhinella marina*, represents the most significant threat to the species.

Mitchell's water monitor Varanus mitchelli (17 records)

The mitchell's water monitor is a semiaquatic varanid that inhabits margins of watercourses, swamps and lagoons. It occurs in the Kimberly, at an isolated locality in northwestern Queensland, and across the Top End of the NT. The diet of the mitchell's water monitor is comprised of mostly aquatic insects, fish, small lizards and frogs. This species is highly susceptible to cane toad toxin, and it potentially competes with the cane toad for food. The introduction of *Rhinella marina* has therefore had a significant impact on Mitchell's water monitor.

Yellow-spotted monitor Varanus panoptes (47 records)

The yellow-spotted monitor is a large terrestrial monitor broadly distributed across far northern Australia. Habitats include coastal areas, floodplains and woodlands, where it preys on small vertebrates and insects. The species is listed as vulnerable due to its susceptibility to cane toad toxins. Population declines of up to 90% have occurred in some areas. Conservation efforts focus on monitoring and preventing the spread of cane toads, especially in areas where the monitor populations are at risk.

Figure 6. Distribution of records of threatened aquatic vertebrate species from the Adelaide River catchment from the NT Fauna Atlas.

4. Review of ecological assets

This chapter presents a review of relevant literature for ecological assets of the Adelaide River catchment. The consequences of hydrological manipulation for 12 freshwater and 11 marine ecological assets were considered by Pollino *et al.* (2018). Here, ecological assets include species or communities that have (i) a substantial public profile, (ii) substantial long-term monitoring data, or (iii) are considered suitable for monitoring impacts of hydrological manipulation (Table 10).

Table 10. Ecological assets of the Adelaide River catchment.

Ecological asset	Key references
magpie geese	Annual monitoring reports
migratory birds	Bamford et al. (2008)
colonial breeding waterbirds	Chatto (2000)
euryhaline elasmobranchs	Pillans et al. (2010)
tidal freshwater fish	Berra and Wedd (2017), Pusey et al. (2016)
migratory aquatic species	Novak et al. (2015), Novak et al. (2017)
saltwater crocodile	Clancy and Fukuda (2024)
water pythons and dusky rats	Madsen and Shine (2000), Madsen et al. (2006)
frogs	Brown and Shine (2016)
monsoon rainforest	Price (1998)

4.1. Magpie goose

The magpie goose Anseranas semipalmata is an iconic waterbird of the tropical wetlands of northern Australia. This species favours wetlands with a high abundance of food plants including wild rice Oryza and water chestnut *Eleocharis dulcis*. Populations may be impacted by habitat homogenisation by invasive grasses such as para grass *Urochloa mutica* (Whitehead and Saalfeld 2000), saltwater intrusion from rising sea levels (Bayliss *et al.* 2018), and potentially by changes to wet season inundation and flooding by water resource development.

Aerial surveys of magpie goose numbers on coastal floodplains of the Top End have been conducted with a consistent methodology since 2011 to inform the management of recreational hunting. Numbers fluctuate from year to year in response to climate impacts on recruitment and mortality. There are population estimates for two blocks of survey transects on the Adelaide River floodplain: downstream Adelaide River and upstream Adelaide River. Numbers in downstream Adelaide River exceed numbers in upstream Adelaide River by about 2:1 (Table 11). The percentage of the Top End magpie goose population on the Adelaide River floodplain varies from year to year, range 1.6 to 16.0%, mean 8.2%, n=13; and the percentage of the number of nests varies from year to year, range 1.3 to 63.6%, mean 14.7%, n=13 (Table 12). The distribution of magpie goose records in the Adelaide River catchment reflects the transect based survey design (Figure 7). The number and spatial distribution of this species on the Adelaide River floodplains vary from year to year, presumably in response to variation in regional rainfall and stream flow (Figure 8). Magpie goose populations in the NT between 1958 and 2000 exhibited 20 year trends coupled with similar trends in rainfall and stream flow (Bayliss and Ligtermoet 2017).

The floodplains of the Adelaide and Mary Rivers were identified as the most important nesting habitat for the magpie goose in the NT (Bayliss and Yeomans 1990). Densities of nests on the Adelaide River floodplain are highest in backswamps on the margins of the floodplain (Saalfeld 2014). In the Kakadu region, the distribution of wet season nesting 'hot spots' was associated with the occurrence of high abundance patches of tall *Eleocharis* sedge species and wild rice *Oryza* (Bayliss and Ligtermoet 2017).

Nest density on the Adelaide River floodplain fluctuated between 2011 and 2024; nesting failed or occurred only at low densities in 2016, 2019 and 2020. Nest density on the Mary River floodplain fluctuated markedly during 1988 to 1993, and nesting failed almost completely in unfavourable years. Nest density and timing of nesting correlated with variation in the timing of the onset of the wet season. Nest densities were higher, and nesting commenced earlier, in seasons preceded by sustained rainfall in the early wet season (Whitehead and Saalfeld 2000).

Further studies are required to examine spatial and temporal variation in the density of the magpie goose and its nests in relation to patterns of inundation and floodplain vegetation on the Adelaide River floodplain.

Table 11. Estimated numbers of magpie geese and geese nests in two survey blocks on the Adelaide River floodplair
from 2011 to 2024.

	Downstream Adelaide River		Upstream Adelaide River				
Year	Block size km²	Est. no. birds	Est. no. nests	Block size km²	Est. no. birds	Est. no. nests	Data source
2011	1,161	125,788	27,538	1,101	81,762	7,019	Saalfeld 2011
2013	798	132,986	6,944	719	40,125	1,323	Saalfeld 2013
2014	798	92,117	10,013	719	31,960	1,574	Saalfeld 2014
2015	798	45,058	2,555	719	57,587	279	Saalfeld 2015
2016	798	45,559	0	719	1,800	589	Saalfeld 2016
2017	798	78,635	20,227	719	22,529	1,409	Groom 2017
2018	798	38,703	13,102	719	31,208	1,425	Clancy 2018
2019	798	25,194	170	719	228	0	Clancy 2019
2020	738	19,931	496	657	25,534	15	Clancy 2020
2021	798	37,173	10,716	719	17,448	1,022	Clancy 2021
2022	798	66,283	1,796	719	82,911	1,874	Clancy 2022
2023	798	94,163	2,927	719	76,283	1,053	Clancy 2023
2024	798	135,346	6,891	719	77,604	5,250	Welch 2024

Table 12. Estimates of the numbers of magpie geese and magpie geese nests on the Adelaide River floodplain, and across all surveyed Top End floodplains.

	Estimated number birds			Esti	mated number n	ests
Year	Adelaide River	Top End	% Top End	Adelaide River	Top End	% Top End
2011	207,550	2,400,000	8.6	34,557	283,000	12.2
2013	173,111	2,500,000	6.9	8,267	13,000	63.6
2014	124,077	1,300,000	9.5	11,587	134,000	8.6
2015	102,645	1,200,000	8.6	2,834	105,000	2.7
2016	47,359	1,350,000	3.5	589	40,000	1.5
2017	101,164	724,500	14.0	21,636	95,000	22.8
2018	69,911	918,200	7.6	14,527	77,840	18.7
2019	25,422	1,542,943	1.6	170	10,484	1.6
2020	45,465	1,432,793	3.2	511	39,723	1.3
2021	54,621	982,156	5.6	11,738	44,010	26.7
2022	149,194	1,856,935	8.0	3,670	62,674	5.9

Ecological assessment of the Adelaide River catchment

Estimated number birds			Esti	mated number n	ests	
Year	Adelaide River	Top End	% Top End	Adelaide River	Top End	% Top End
2023	170,446	1,260,454	13.5	3,980	45,900	8.7
2024	212,950	1,330,246	16.0	12,141	70,244	17.3
average	114,147	1,446,017	8.2	9,708	78,529	14.7

Figure 7. Distribution of magpie goose records in the NT Fauna Atlas for the Adelaide River catchment.

Figure 8. Distribution of magpie geese on Adelaide River floodplain from wet season surveys in 2011 and 2013.

4.2. Migratory shorebirds

The Adelaide River floodplain provides migration stop over habitat for migratory birds. Lake Finniss is identified as an internationally important site for migratory shorebirds in the East Asian-Australasian Flyway (Bamford *et al.* 2008). Maximum counts of species that are internationally significant (that is >1% global population) include 12,000 little curlew (Jaensch 1994), 3,000 red-necked avocet (Chatto 2006), and 2,000 black-tailed godwits (Chatto 2003). Coastal mudflats and nearby areas support internationally significant numbers of shorebirds, and thousands of Oriental pratincole *Glareola maldivarum* occur on the floodplain prior to the wet season. Important shorebird habitat is defined by the Commonwealth *Environmental Protection and Biodiversity Conservation Act 1999* as supporting 0.1% of the flyway population, or 2,000 migratory shorebirds, or 15 migratory shorebird species.

Bilateral migratory bird agreements with Japan and China aim to conserve migratory birds in the East Asian-Australasian Flyway. The Japan-Australia Migratory Bird Agreement lists 66 migratory species; the China-Australia Migratory Bird Agreement lists 81 species. Australia is also a signatory to the Convention on Wetlands of International Importance, more commonly known as the Ramsar Convention. There are records of 42 migratory bird species from the Adelaide River floodplain (Table 13, Figure 9). At least 28 listed migratory bird species have been recorded from Fogg Dam Reserve.

Family	Species name	Common name	No. records	% no.
Acrocephalidae	Acrocephalus orientalis	Oriental reed-warbler	17	0.9
Charadriidae	Anarhynchus leschenaultii	greater sand plover	9	0.5
Charadriidae	Anarhynchus mongolus	Siberian sand plover	23	1.2
Charadriidae	Charadrius veredus	Oriental plover	21	1.1
Charadriidae	Pluvialis fulva	Pacific golden plover	18	1.0
Charadriidae	Pluvialis squatarola	grey plover	26	1.4
Glareolidae	Glareola maldivarum	Oriental pratincole	61	3.2
Laridae	Chlidonias leucopterus	white-winged black tern	157	8.3
Laridae	Gelochelidon nilotica	common gull-billed tern	220	11.7
Laridae	Hydroprogne caspia	Caspian tern	60	3.2
Laridae	Onychoprion anaethetus	bridled tern	2	0.1
Laridae	Sterna hirundo	common tern	9	0.5
Laridae	Sterna sumatrana	black-naped tern	8	0.4
Laridae	Sternula albifrons	little tern	21	1.1
Laridae	Thalasseus bergii	crested tern	16	0.8
Scolopacidae	Actitis hypoleucos	common sandpiper	176	9.3
Scolopacidae	Arenia interpres	ruddy turnstone	7	0.4
Scolopacidae	Calidris acuminata	sharp-tailed sandpiper	144	7.6
Scolopacidae	Calidris alba	sanderling	2	0.1
Scolopacidae	Calidris canutus	red knot	6	0.3
Scolopacidae	Calidris falcinellus	broad-billed sandpiper	6	0.3
Scolopacidae	Calidris ferruginea	curlew sandpiper	36	1.9
Scolopacidae	Calidris melanotos	pectoral sandpiper	1	0.1
Scolopacidae	Calidris ruficollis	red-necked stint	36	1.9

Table 13. List of 42 migratory bird species recorded on Adelaide River floodplain and listed under either the

 Japan-Australia Migratory Bird Agreement, or the China-Australia Migratory Bird Agreement.

Ecological assessment of the Adelaide River catchment

Family	Species name	Common name	No. records	% no.
Scolopacidae	Calidris subminuta	long-toed stint	6	0.3
Scolopacidae	Calidris tenuirostris	great knot	14	0.7
Scolopacidae	Gallinago hardwickii	latham's snipe	1	0.1
Scolopacidae	Gallinago megala	swinhoe's snipe	7	0.4
Scolopacidae	Limnodromus semipalmatus	Asian dowitcher	6	0.3
Scolopacidae	Limosa lapponica	bar-tailed godwit	30	1.6
Scolopacidae	Limosa limosa	black-tailed godwit	54	2.9
Scolopacidae	Numenius madagascariensis	far eastern curlew	26	1.4
Scolopacidae	Numenius minutus	little curlew	197	10.4
Scolopacidae	Numenius phaeopus	whimbrel	51	2.7
Scolopacidae	Phalaropus lobatus	red-necked phalarope	1	0.1
Scolopacidae	Tringa brevipes	grey-tailed tattler	15	0.8
Scolopacidae	Tringa glareola	wood sandpiper	86	4.6
Scolopacidae	Tringa nebularia	common greenshank	134	7.1
Scolopacidae	Tringa stagnatilis	marsh sandpiper	139	7.4
Scolopacidae	Tringa totanus	common redshank	8	0.4
Scolopacidae	Xenus cinereus	terek sandpiper	17	0.9
Anatidae	Spatula querquedula	garganey	13	0.7

Figure 9. Distribution of records of migratory bird species listed under the Japan-Australia Migratory Bird Agreement of the China-Australia Migratory Bird Agreement.
4.3. Colonial breeding waterbirds

Breeding sites of 15 colonial breeding waterbird species were identified during aerial surveys of the coast and coastal floodplains of the Top End from 1990 to 1999 (Chatto 2000). Surveys identified 76 confirmed colonial waterbird breeding sites, 27 of which were considered as nationally significant. Of these, 12 were found between the Finniss River and the Moyle River, and eight were between the Adelaide River and Murganella Creek. Most of the larger colonies were located on the western side of the Top End. The largest single colony (W025), supporting up to 30,000 birds, was found on a tributary of the Adelaide River (Figure 10). Chatto (2000) documented three confirmed active colonies and four unconfirmed or historical colonies on the Adelaide River (Figure 11).

4.3.1. Confirmed colonies

W025. Located in mangroves 5 kms up a tributary of the Adelaide River and 15 kms from the mouth. Ten confirmed species breeding. Nesting from early November to late August, with a sequence of nesting activity commencing with cattle egrets, and finishing with royal spoonbills and Australian white ibis.

W046. Western bank of the Adelaide River, 15 kms from mouth. Two confirmed species breeding (little black cormorant and darter). Small colony less than10 kms from W025.

W015. Small, relatively insignificant darter and nankeen night-heron colony in paperbark on a creek between Adelaide and Mary Rivers.

4.3.2. Unconfirmed or historical colonies

W944. Extinct colony near mouth of Adelaide River reported by Frith and Davies (1961), with six breeding species, and in excess of 10,000 birds.

W949. Adelaide River north-east of Tommy Policeman Lagoon. Probably inactive but reported as a very dense mixed species colony over 100 m long on the Adelaide River.

W915. Small breeding site for royal spoonbill and intermediate egret in the vicinity of Fogg Dam Reserve.

W932. Nankeen night-heron site reported to be active sometime between January 1944 and January 1945 on Marrakai Creek.

There have been no recent surveys to assess the current status of these colonies, or to identify additional colonies. Further work is required to assess current activity and status of these colonies, and to develop methods to quantify seasonal and interannual variability in nesting activity.

Figure 10. Cattle egrets breeding in colony W025, in a tributary of the Adelaide River, November 1988 (from Chatto 2000).

Figure 11. Location of three confirmed (W046, W025 and W015) and four unconfirmed or historical (W944, W949, W915 and W932) waterbird breeding colonies on the Adelaide River.

4.4. Euryhaline elasmobranchs

Euryhaline and estuarine generalist elasmobranchs are poorly known and disproportionately threatened, with 72.4% at risk of extinction or data deficient (Constance *et al.* 2023). Three species of euryhaline sharks are known to occur in the Adelaide River (Pillans *et al.* 2010): the speartooth shark *Glyphis glyphis*, northern river shark *Glyphis garricki* and bull shark *Carcharhinus leucas*. A further two species of euryhaline rays, largetooth sawfish *Pristis pristis* and freshwater whipray *Urogymnus dalyensis* also inhabit the Adelaide River, occupying most habitats from the headwaters to the coastal flats. River sharks and rays utilise freshwater and low salinity reaches of the Adelaide River during the juvenile phase of their life cycle, presumably to avoid predation during the vulnerable phase.

Two species, northern river shark *Glyphis garricki* and speartooth shark *G. glyphis*, have limited ranges in northern Australia (Udyawer *et al.* 2021). The former species is listed as endangered, and the latter as critically endangered under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999*. The third species, bull shark, *Carcharhinus leucas*, has a widespread global distribution. River sharks use the mid reaches of the Adelaide River in the late dry season and move downstream after the onset of the wet season (Kyne and Feutry 2017).

The broad scale movements of speartooth shark *Glyphis glyphis* within the tidal reaches of the Adelaide River have been studied for several years. Modelling of this data may reveal broad scale habitat preferences which can be used to assess effects of reduced flows and altered salinity dynamics. Although the life history traits of northern river sharks are poorly understood, they are sympatric with speartooth sharks and anecdotally share similar life history traits such as a reliance on upper estuarine habitats for juvenile development, with movement into the upper reaches of the tidal limit restricted by salinity gradients. Bull sharks utilise a wide range of salinities throughout their life cycle and unlike *Glyphis*, don't rely on salinity gradients as a barrier to migration. Literature on the habitat preferences of other fish species within the tidal reaches is sparse however there is some available (Berra and Wedd 2017).

Largetooth sawfish are threatened globally and listed under both Territory and Australian legislation. The Adelaide River is recognised as a stronghold for the species (Kyne *et al.* 2021). Sawfish utilise coastal river systems as juvenile nursery areas and remain in freshwater until they reach sexual maturity at a length of 3-4 m (Buckley *et al.* 2020). Sawfish utilise a range of aquatic habitats during this early growth phase and can remain landlocked in freshwater. Sawfish have been observed in the Adelaide River from the coastal mudflats up to the headwaters above Adelaide River township. Long-term acoustic tracking of juvenile sawfish in the Adelaide River (Buckley *et al.* 2020) revealed tidal assisted movement patterns within the main channel. Access throughout the river system main stem and floodplain refugia is integral to long-term survival of juvenile sawfish and disruption of flows during the dry season or restricted access to off-channel refugia may further impact an already imperilled population.

4.5. Tidal freshwater fish

The composition, habitat and environmental covariates of distribution of most fish species in the tidal rivers of northern Australia are poorly known. The fish assemblages of the tidal reaches of the South Alligator River were surveyed by beam trawl in 2012 (Pusey *et al.* 2016). The survey identified 81 taxa, 26 of which had not previously been recorded. There have been no similar quantitative surveys of the fish fauna of the Adelaide River. The fish fauna of the tidal freshwater reach of the Adelaide River is particularly understudied.

The spawning requirements of most fish species in the tidal rivers of northern Australia are similarly poorly known. Published studies for Adelaide River include a study on the environmental covariates of spawning in the nurseryfish *Kurtus gulliveri* (Berra and Wedd 2017). The nurseryfish is the only fish known to exhibit 'forehead brooding', where males carry the fertilized eggs on a supra-occipital hook. Within the period July to October, larval nurseryfish were found in the mid reaches of the Adelaide River, most commonly at salinities between 0.5 ppt and 13.6 ppt. Hydrological manipulation of the river could alter the area suitable for larval occupancy.

In addition to nurseryfish, there is a suite of species that inhabit the tidal freshwater interface referred to as 'tidal freshwater' species. The biology and ecology of most of these species are poorly known. In common with nurseryfish, hydrological manipulation of the river could lower habitat availability for these species.

4.6. Migratory aquatic species

4.6.1. Barramundi

The barramundi, *Lates calcarifer*, is a facultatively catadromous species of the tropical rivers of northern Australia. Growth rate, migration tendency and year class strength are linked to hydrological variability. Growth rates of estuarine barramundi are positively related to freshwater flow (Robins *et al.* 2006).

Populations contain coexisting contingents of migratory and resident individuals. Migration tendency of juvenile barramundi is influenced by resource availability (Roberts *et al.* 2023), with upstream migration more likely in years of scarce resources during lower rainfall years.

The life history of the barramundi features sequential hermaphroditism. Female maturation is linked to juvenile growth rate. Fast growing fish may make a disproportionate contribution to population fecundity; hence factors that reduce growth rates such as degradation of floodplain habitats are likely to impact the productivity of barramundi fisheries (Roberts *et al.* 2021).

Crook *et al.* (2022) used age and growth data from otoliths to model recruitment and growth, and climatic and river hydrology variables in four NT rivers, excluding the Adelaide River. They used river-specific hydrology analyses to predict the effect of abstraction on recruitment and growth. The study found strong evidence that recruitment is linked to the Australian monsoon index, and found strong negative effects of abstraction on recruitment, with effects varying among river systems.

Barramundi and salmon catfish, *Neoarius leptaspis*, undertake extensive movements between dry season refugia and inundated floodplain habitat in response to the wet season pulse of resources (Crook *et al.* 2019).

4.6.2. Cherabin

The palaemonid shrimp, *Macrobrachium spinipes*, (commonly known as cherabin) occurs widely throughout the rivers and streams of northern Australia. Cherabin have an amphidromous life cycle: larvae migrate from freshwater to estuarine water for development during the wet season, and juveniles undertake a recruitment migration 3 to 4 months later during the early dry season. A second palaemonid species, *M. bullatum* completes larval development entirely within freshwater. Other *Macrobrachium* species may also occur within the estuary. Palaemonids make a large contribution to the diet of predatory freshwater fish including spangled perch, sooty grunter and barramundi (Jardine *et al.* 2012).

The life history and population dynamics of cherabin in the Daly River were investigated by Novak *et al.* (2015, 2017). Ovigerous females can occur up to 400 km upstream. Reproduction is restricted to wet season months. Drifting larvae need to reach saline waters within seven days for development. Upstream migration by juveniles occurs in pulses over a 3 to 6 week period in late March and April. Migration rate is strongly associated with discharge, but the timing and environmental drivers of migration differed between the years of the study, with moon illumination significant in 2014 but not 2013. In addition, juvenile atyid shrimps of the genus *Caridina* were observed to migrate during the same period. An estimated 10 to 20 million shrimps migrate upstream during each wet season. Migration potentially plays an important role transporting nutrients between reaches, but there is no evidence of a direct marine subsidy to freshwater systems.

Studies of the timing, duration and environmental covariates of upstream migration by juvenile cherabin in the Adelaide River system would provide information on the environmental flow requirements of a key species.

4.6.3. Sooty grunter

Sooty grunter *Hephaestus fuliginosus* is a common species of rivers and streams throughout northern Australia. It is highly valued as food by Aboriginal people and is targeted by recreational anglers. Water extraction for agricultural development will potentially reduce habitat availability for this flow dependent species and will restrict longitudinal connectivity. Habitat selection studies in the Daly River suggest that the sooty grunter undertakes an ontogenetic habitat shift, with small fish utilising shallow, fast flowing riffle habitats and larger fish preferring deep, slow flowing pools (Keller *et al.* 2019). Habitat selection by juvenile sooty grunters has been studied in a reach of the Katherine River, using radiotelemetry to pinpoint the location of tagged fish, and hydrodynamic modelling to predict the distribution of depth and velocity under different flow scenarios (Crook *et al.* 2021). Modelled data were used to quantify minimum flow requirements. Broadscale longitudinal movements have been studied in the Daly River using acoustic telemetry. Tagged fish made long distance forays in both upstream and downstream directions (King *et al.* 2021). One individual moved 60 km upstream in 3.5 days before leaving the detection array.

4.7. Saltwater crocodile

Numbers and biomass of saltwater crocodiles are monitored in Top End rivers using standardised survey methods (Fukuda *et al.* 2013) as part of the NT crocodile management program. The Adelaide River is one of eight rivers monitored on a regular basis. Surveys of crocodile populations of the tidal portion of the Adelaide River have been conducted since 1977 and are now conducted on an annual basis. Modelling of population counts from the Adelaide River reveals a pattern of logistic growth, with numbers appearing to stabilise at an asymptote of between 4 and 5 sightings per kilometre (Clancy and Fukuda 2024), suggesting recovery to pre hunting levels. Crocodile eggs can be harvested from wild crocodile nests by permit holders. Returns from permit holders are closely monitored to ensure compliance with permit conditions. The concentration of saltwater crocodile records in the tidal portion of the Adelaide River reflects the extent of monitoring surveys (Figure 12).

Landsat satellite imagery and additional spatial information have been used to model the distribution of potentially suitable nesting habitat of *C. porosus* in the Adelaide River and Melacca Swamp wetlands (Harvey and Hill, 2003).

Figure 12. Distribution of records of saltwater crocodile *Crocodylus porosus* from the NT Fauna Atlas from the Adelaide River catchment.

4.8. Water python and dusky rat

Long-term studies of the demography of water python *Liasis fuscus* and its main prey, dusky rat, *Rattus colletti*, in the area of Fogg Dam Reserve showed climate driven fluctuations in numbers (Madsen *et al.* 2006). Rat numbers were low in years with low and high rainfall at the end of the wet season; annual fluctuations in rat numbers correlated with variation in female python reproduction, condition, and survival. Prolonged rat breeding is essential if hatchling pythons are to encounter ingestible size prey (Shine and Madsen 1997). Flood events in 2007 and 2011 caused the collapse of this predator prey system, and massive shifts in python demography (Ujvari *et al.* 2016).

A 10 year study of the demography Arafura file snake, *Acrochordus arafurae*, in the Alligator Rivers region showed that annual variation in rainfall pattern drives population dynamics. High rainfall late in the wet season caused prolonged inundation of the floodplain, high fish abundance, and high proportion of reproductive adult females (Madsen and Shine 2000).

4.9. Frogs

The Flora and Fauna Division species database contained 3,556 records representing 26 species of frogs for the Adelaide River catchment. Unlike in other parts of Australia and globally, there is no evidence of recent declines in frog species in the NT (Woinarski 1993, Stuart *et al.* 2004, Richards *et al.* 2006, Brown and Shine 2016). The frog fauna of the NT includes 47 species, of these, only one species is listed as of conservation concern. The Howard River toadlet, *Uperoleia daviesae*, has a restricted distribution within the greater Darwin area, is threatened by urban expansion, and is listed as vulnerable under NT and national legislation. The toadlet is one of several threatened species restricted to sandsheet heath. A 16 year survey of four native frog species in the Fogg Dam Reserve area found abrupt and asynchronous shifts in abundance and species composition from year to year which were not clearly linked to rainfall pattern, and there was no evidence of consistent declines over time (Brown and Shine 2016).

4.10. Monsoon rainforest

There are 825 mapped patches of monsoon rainforest in the Adelaide River catchment. About 5,500 ha of rainforest (or 2% of the NT rainforest estate) occur as scattered patches mostly along the upland margin of the floodplain (Figure 13). Rainforests in proximity to the Adelaide River floodplain have been identified as one of six clusters of rainforest patches required to capture rare endemic rainforest plant species (Price 1998).

Figure 13. Distribution of monsoon rainforest in the Adelaide River catchment.

5. Spatial variation in water quality

Environmental data, including data on water quality parameters, were collected at each survey site to provide information on baseline condition, and to provide explanatory variables for the analysis of ecological data. At each site, *in situ* data was collected on physicochemical variables and water samples were collected for laboratory analysis of water quality parameters (Table 14). The timing of sample collection was standardised to control for diurnal variation. There was no assessment of diurnal or seasonal variation in water quality.

5.1. Methods

Data on physicochemical variables were collected from three subsites at each site using a YSI field water quality meter at a depth of 0.5 m from the water surface. Field variables included water temperature, dissolved oxygen, pH and conductivity. A Hach turbidity meter was used to collect data on turbidity at each subsite. Water samples were collected from near the water surface at one subsite for the laboratory analysis of chlorophyll *a* concentration, total nutrients (nitrogen and phosphorus), ionic composition and isotopic composition. Nutrient samples were frozen in the field; ionic composition and general parameters samples were refrigerated. Chlorophyll samples were filtered and then frozen in the field.

Longitudinal patterns in water quality are shown for a sequence of nine sites, including six freshwater sites from the upper most site at DRRD, and three tidal freshwater sites. Differences between riverine and off-stream channel sites are illustrated using box plots of variability of six water quality parameters at six freshwater sites and six off-stream channel sites. Piper diagrams are used to examine variability in ionic composition among sites.

Data type	Method	Laboratory	Parameters
Field measurements of physico- chemical parameters	YSI DSS Hach turbidimeter		DO, %DO Temperature pH Electrical conductivity Turbidity
Total nutrient concentration		Intertek, Darwin	Total nitrogen Total phosphorus
Ionic composition		Intertek, Darwin	Anions Cl, CO3, HCO3, SO4 Cations Ca, Mg, K, Na
General parameters		Intertek, Darwin	Alkalinity Hardness Total dissolved solids
Chlorophyll concentration		ECMU	Chlorophyll a
Isotopic composition			180 VSMOW 2H VSMOW

Table 14. Water quality parameters collected at each of the 18 study sites in the Adelaide River catchment.

5.2. Results

Water quality parameters varied according to habitat class and position in the landscape (Table 15). The primary trends are longitudinal differences within freshwater reaches; differences between freshwater and tidal freshwater reaches; differences in mean values and variability of riverine and off-stream channels; and differences between non-impacted and impacted sites.

Electrical conductivity of the freshwater reach of the Adelaide River ranged from a minimum value of 78.1 μ S/cm at the upper most site at site Daly River Road Crossing (DRRD), but thereafter was relatively invariable (mean value 261.4 μ S/cm) from Adelaide River township, site Adelaide River Bridge Riffle (ARBR) to the tidal limit at site Marrakai Crossing (MKXG).

Values increased in the tidal freshwater reach (Figure 14). Differences in the conductivity of the upper most sites (DRRD for Adelaide River, and CMCK for Coomalie Creek) presumably reflect differences in the chemistry of groundwater sources at these sites (Figure 15). The conductivity of off-stream channels ranged from 29.7 to 56.4 μ S/cm, and averaged 46.2 μ S/cm. Off-stream channels are inundated by wet season floodwaters; the difference in conductivity among off-stream channel site may reflect differences in the timing of connection with floodwaters.

Chlorophyll *a* concentration tended to increase throughout the longitudinal sequence but was markedly higher at the tidal freshwater site Kaissis Creek (KSCK). Total nitrogen concentration mirrored the pattern for conductivity. Total phosphorus values tended to be low and invariable at freshwater sites, then increased markedly downstream in the tidal freshwater (Figure 14).

Values of chlorophyll *a*, total nitrogen, total phosphorus and turbidity tended to be relatively low and invariable at freshwater channel sites, but high and variable at off-stream channel sites. Electrical conductivity, as noted above, tends to be high and invariable at freshwater sites and low and invariable at off-stream channel sites (Figure 16).

The single impacted floodplain lagoon site featured high values of chlorophyll *a*, high total nitrogen and turbidity, and low percentage dissolved oxygen. Maps of the spatial variability of water quality parameters are presented in Figures 17 to 21.

Site	Date	Time	Chlorophyll a (μg/L)	Electrical conductivity (µS/cm)	Total nitrogen (mg/L)	l otal phosphorus (mg/L)	Turbidity (NTU)	% dissolved oxygen
Freshwate	r main chann	el sites in lo	ngitudinal seq	uence (classes	1, 2.1 and 2.	2)		
DRRD	23/08/24	10:09	0.5	78.1	0.03	0.005	2.8	67.9
ARBR	12/08/24	14:52	1.3	279.2	0.19	0.02	2.1	92.4
STRD	13/08/24	10:03	3.2	271.5	0.18	0.01	9.6	68.4
ARDD	06/08/24	11:12	1.7	247.4	0.21	0.01	3.0	56.7
DDRF	17/08/24	11:37	2.5	248.0	0.18	0.005	2.8	64.5
MKXG	12/08/24	9:16	3.1	260.9	0.17	0.005	3.1	69.4
Tidal fresh	water sites ir	n longitudina	al sequence (c	ass 6)				
MRJN	16/08/24		4.4	273.4	0.17	0.01	5.6	59.1
KSCK	14/08/24	10:12	20.4	330.1	0.24	0.035	90.2	96.7
BTCK	15/08/24	10:07	6.6	495.1	0.46	0.1	211.5	92.2
Riverine la	goon on tribu	utary stream	, headwaters	(Coomalie Cree	ek) (class 2.1)			
СМСК	22/08/24	9:08	11.9	424.7	0.25	0.035	6.1	58.4
Freshwate	r non-main c	hannel						
Upper (clas	ss 3.1)							
MKBB	10/08/24	9:46	19.9	48.8	1.06	0.035	5.6	53.1
DLDD	05/08/24	10:55	4.2	29.7	0.38	0.01	3.5	87.2
Middle (cla	ss 3.2)							
AR03	09/08/24	9:27	4.4	40.3	0.35	0.015	1.8	57.0
AR01	20/08/24	9:40	4.6	51.0	0.38	0.015	1.4	76.1
Lower (clas	ss 3.3)							
AULD	07/08/24	9:42	5.3	51.2	0.43	0.025	7.3	40.3
DNLG	08/08/24	9:22	11.3	56.4	0.76	0.055	13.6	72.9

 Table 15. Data for six water quality parameters at 18 sites in the Adelaide River catchment, ordered by habitat class.

Figure 14. Longitudinal variability in data for six water quality variables in freshwater reach (red) and tidal freshwater reach (blue) of the Adelaide River.

Figure 15. Piper diagrams of variation in ionic composition between sites with different groundwater sources, (sites DRRD and CMCK); and between sites with wet season (DLDD) and dry season (ARDD) characteristics.

Figure 16. Boxplots of data for six water quality parameters of freshwater riverine and off-stream channel sites.

Figure 17. Spatial variability of values of electrical conductivity (μ S/cm) at 18 sites in the Adelaide River catchment. Sites were sampled from 5 to 23 August 2024.

Figure 18. Spatial variability of values of chlorophyll *a* (μ g/L) at 18 sites in the Adelaide River catchment. Sites were sampled from 5 to 23 August 2024.

Figure 19. Spatial variability of values of total nitrogen (mg/L) at 18 sites in the Adelaide River catchment. Sites were sampled from 5 to 23 August 2024.

Figure 20. Spatial variability of values of total phosphorus (mg/L) at 18 sites in the Adelaide River catchment. Sites were sampled from 5 to 23 August 2024.

Figure 21. Spatial variability of values of turbidity (NTU) at 18 sites in the Adelaide River catchment. Sites were sampled from 5 to 23 August 2024.

6. Spatial variation in aquatic biodiversity

6.1. Introduction

There have been few previous surveys of the aquatic fauna of the Adelaide River catchment. Midgley (1984) recorded 24 fish taxa from six sites in the Adelaide and Margaret Rivers, however, several taxa were not identified to species level. The most recent surveys were conducted for a study of trait variation across a hydrological gradient (Luiz *et al.* 2022) which included four sites in the Adelaide River catchment. This survey found 37 taxa, two of which were only identified to genus. For the NT, the only catchment wide study of spatial variation, and associated environmental correlates, was undertaken at 55 sites in the Daly River catchment over two years (Pusey *et al.* 2020).

This chapter presents data on spatial variation in richness, abundance and composition of the aquatic biota of the study area. Target taxa include fish, aquatic and semiaquatic reptiles, and decapod crustacea. Aquatic and semiaquatic reptiles include file snakes, semiaquatic snakes, turtles, crocodiles, and aquatic varanids. Decapods include the carid shrimp families Atyidae and Palaemonidae.

6.2. Methods

6.2.1. Study design

The study sought to describe aquatic faunal assemblages at representative sites spanning gradients of riverine and non-riverine wetland habitats available for sampling in the mid-dry season. In particular, the study was designed to examine differences between (i) freshwater and tidal freshwater habitats, (ii) pool and riffle habitats in riverine channels, and (iii) among off-stream non-channel habitats in a longitudinal sequence from upper, mid and lower portions of the river.

Systematic sampling of aquatic biodiversity was conducted at 18 sites across the study area (Figure 22). Nine sites were located within the main channel of the Adelaide River; seven sites were located in off-stream channels or billabongs; and a further two sites were located in tributary streams of the Adelaide River. Site CMCK was located in the upstream portion of Coomalie Creek, and site Acacia Gap Lagoon (AGLN) was located in the downstream portion of Manton Creek. Orthomosaic images of 11 sample sites were derived from aerial imagery captured by a Mavic 3M UAV (Figure 23, Figure 24, and Figure 25).

Sites were allocated to six habitat classes, with subclasses for two classes based on landscape position. Subclasses of riverine channel are distinguished by landscape position and dominant riparian species; subclasses of off-stream channel are distinguished by landscape position, channel morphology and the relative dominance of emergent, submerged and floating macrophytes (Table 16).

Figure 22. Distribution of 18 aquatic biodiversity survey sites in the Adelaide River catchment.

Class	Subclass	Sites	Habitat type	Features
1		ARBR, DDRF, MKXG	stream riffle	shallow, flowing, rocky substrates with complex microhabitats
2	1	DRRD, CMCK	pool in river channel (upper)	<i>Pandanus aquatica</i> dominant riparian vegetation, mean max. depth 4.6 m
2	2	STRD, ARRD	pool in river channel (lower)	<i>Bambusa arnhemica</i> dominant riparian vegetation, mean max. depth 4.1 m
3	1	MKBB, DLDD	off-stream channel (upper)	no macrophyte cover, mean max. depth 5.9 m
3	2	AR01, AR03	off-stream channel (middle)	AR03 moderate <i>Nymphaea</i> cover; AR01 high submerged macrophyte cover, mean max. depth 4.7 m
3	3	AULD, DNLG	off-stream channel (lower)	shallow, high macrophyte cover, mean max. depth 2.4 m
4		AGLN	riverine lagoon	adjacent to floodplain, high Nymphaea cover
5		BHRF	floodplain channel	impacted by invasive pasture grasses
6		MRJN, KSCK, BTCK	tidal freshwater	Tidal, increasing salinity and turbidity

 Table 16. Habitat classes of 18 survey sites in Adelaide River catchment.

DRRD (class 2.1)

STRD (class 2.2)

ARDD (class 2.2)

CMCK (class 2.1)

Figure 23. Orthomosaic images of four riverine channel survey sites in the Adelaide River.

Ecological assessment of the Adelaide River catchment

MKBB (class 3.1)

AR03 (class 3.2)

AR01 (class 3.2)

DLDD (class 3.1)

Figure 24. Orthomosaic images of four off-stream channel survey sites in the Adelaide River.

AULD (class 3.3)

DNLG (class 3.3)

BHRF (class 5)

Figure 25. Orthomosaic images of four off-stream channel/floodplain lagoon survey sites in the Adelaide River.

6.2.2. Sampling methods

Aquatic surveys were conducted over an 18 day period from 5 to 23 August 2024. Most of the 18 sites were visited for a period of up to eight hours from mid-morning to mid-afternoon. There was no opportunity to deploy sampling equipment during the crepuscular period from late afternoon to early evening; nor an opportunity to conduct active searches of aquatic animals using spotlighting.

To sample aquatic vertebrates, multiple sampling methods were deployed at each site, though not all methods could be deployed at all sites. Sampling methods included:

- 1. small bait traps deployed in edge habitats
- 2. modified cathedral-style turtle traps baited with meat
- 3. cast net throws
- 4. fyke nets set in shallow water
- 5. gill nets
- 6. backpack electro-fishing
- 7. boat electro-fishing.

Backpack electro-fishing used eight replicated sampling units of 150 seconds in duration; boat electro-fishing used up to 15 replicated sampling units of 90 seconds in duration. The actual number of boat electro-fishing shots depended on the physical dimensions of the site. Most captured specimens were released at the point of capture, though some fish and decapods were retained as voucher specimens. Tissue samples for genetic analysis were collected from the webbing of the rear foot of some turtle specimens and preserved in 100% analytical grade ethanol.

Decapods were collected using a scoop net in shallow littoral habitats, and as by-catch from vertebrate sampling methods. Specimens were preserved in 80% ethanol for later identification using published taxonomic keys.

6.2.3. Specimen identification and taxonomy

Most specimens were identified in the field and released unharmed. Fish retained as voucher specimens were lodged with the fishes section of MAGNT in Darwin, for identification, general QA/QC and DNA analysis. Special effort was made to ensure correct identification for a historically problematic group of gobies in the genus *Glossogobius* based on a recent field key developed for the region (Hammer *et al.* 2021). Fish nomenclature generally follows the convention followed by Atlas of Living Australia, although some 'older' genus names for forktail catfish (Ariidae) were retained for stability given their systematic placement is still not settled, and we followed use of the name *Denariusa bandata* for pennyfish following Pusey *et al.* (2017).

6.2.4. Data analysis

The adequacy of the electro-fishing sampling effort at each site was assessed using rarefaction analysis in the software package EstimateS (Colwell 2013). Richness-effort curves are used to assess whether species richness is asymptotic at a given level of sampling effort. For each site, the number of species detected using all methods, and the number of species detected using electro-fishing, were used to calculate the mean percentage of species not detected using electro-fishing.

The frequency of occurrence (that is the number of sites at which each species was detected) and the percentage frequency of occurrence was tabulated for each species.

Spatial patterns in aquatic biodiversity were analysed using three methods:

- (i) plots and maps of species richness
- (ii) box-plots of variation in abundance of individual species
- (iii) multivariate analyses of variation in patterns of species abundance.

The numbers of species detected at each site were tallied by taxa group and presented as a bar-plot. The number of species of fish detected at a site, and of all aquatic species detected at a site, were mapped to show the distribution of species richness across the study area. Box-plots were calculated for the 16 top ranked species using caught and observed data from electro-fishing, and for the eight top ranked species using caught data from electro-fishing. Box-plots were also calculated for total numbers of both caught and observed and caught data and for species richness of both caught and observed and caught data. Box-plots show median values, the 25 and 75 percentiles, and either maximum value or 1.5 times the interquartile range of the data, whichever is the smaller. Points more than 1.5 times the interquartile range above the third quartile and points more than 1.5 times the interquartile range below the first quartile are defined as outliers and plotted individually.

Multivariate analysis was used to examine spatial patterns in species composition using the software package PRIMER version 7.0.13 (Clarke and Gorley 2015). The analysis used caught data from electro-fishing corrected for the number of electro-fishing shots per site. Data was square root transformed prior to analysis to down weight the contribution of high values. Discrete groups of sites and species were identified using the SIMPROF test in the CLUSTER classification procedure. Results are presented as a shade plot showing patterns of abundance of 42 species, ordered by classification group, across 18 sites. Characteristic species within groups were identified using SIMPER (similarity percentages). This procedure examines the contribution each species makes to the average similarity within a group. Abundant species within a group will contribute to the intragroup similarities. These species may not be good discriminator species and may be typical of a number of groups (Clarke *et al.* 2014). Species contributing up to 70% of cumulative similarity are listed.

6.3. Results

6.3.1. Adequacy of sampling

Species richness approached asymptotic values for eight of the 18 survey sites, suggesting that for the remaining sites survey effort was not sufficient to estimate species richness (Figure 26). The survey effort at the most intensively surveyed site (AGLN, with 15 sampling units) could not be replicated at all sites. Additional sampling may fail to detect those species with a low probability of detection by electro-fishing. On average, two additional species were detected only by methods other than electro-fishing (Table 17). In general, detection failures involved small-bodied species of the shallow littoral zone, and large-bodied species of deepwater habitats.

Ecological assessment of the Adelaide River catchment

Figure 26. Rarefaction curves showing relationship between sampling effort and species richness for electro-fishing data comprising multiple sampling units.

Table 17. Number of species of fish collected by electro-fishing, and by all methods at each site, and percent difference of the number of species.

Site	Electro-fishing type	All methods	Electro-fishing	Δ	%Δ
AGLN	boat	25	22	3	12.0
AR01	boat	21	20	1	4.8
AR03	boat	16	13	3	18.8
ARBR	backpack	12	8	4	33.3
ARDD	boat	14	10	4	28.6
AULD	boat	22	18	4	18.2
BHRF	boat	13	12	1	7.7
ВТСК	boat	13	11	2	15.4
СМСК	boat	12	10	2	16.7
DDRF	backpack	16	14	2	12.5
DLDD	boat	16	12	4	25.0
DNLG	boat	18	15	3	16.7
DRRD	boat	11	10	1	9.1
KSCK	boat	11	10	1	9.1
МКВВ	boat	12	11	1	8.3
MKXG	backpack	17	14	3	17.6

Site	Electro-fishing type	All methods	Electro-fishing	Δ	%Δ
MRJN	boat	13	13	0	0.0
STRD	boat	19	18	1	5.3
Mean		15.6	13.4	2.2	14.4

6.3.2. Composition of sampled fauna

6.3.2.1. Fish

Forty-five fish species were detected during surveys of 18 sites. The most frequently recorded fish species were chequered rainbowfish *Melanotaenia splendida inornata*, 16 sites, 88.9%; mouth almighty *Glossamia aprion*, 16 sites, 88.9%; sleepy cod *Oxyeleotris lineolata*, 14 sites, 77.8%; barred grunter *Amniataba percoides*, 14 sites, 77.8%; and sevenspot archerfish *Toxotes chatareus*, 14 sites, 77.8%. Nine species were recorded at one site only: warrior catfish *Hemiarius dioctes* (site BTCK); crimsontip gudgeon *Butis butis* (site KSCK); smalleye gudgeon *Prionobutis microps* (site DDRF); worm goby *Caragobius rubristriatus* (site BTCK); weber's mudskipper *Periophthalmus weberi* (site KSCK); toothless catfish *Anodontiglanis dahli* (site STRD); long-jaw river garfish *Zenarchopterus caudovittatus* (site BTCK); freshwater anchovy (*Thryssa brevicauda* (site BTCK) and *T. malabarica* (site KSCK).

Surveys recorded 45 of the 83 species known or suspected to occur in the study area (Table 18); 24 of the 33 obligate freshwater species 72.7%; and 18 of the 43 euryhaline species 41.9%. The fauna of the tidal freshwater reach was relatively poorly sampled, and further work is required to elucidate the composition of fish assemblages in this part of the river.

Figure 27. Common species of freshwater fish captured in surveys of Adelaide River.

Family	Species name	Common name	F	% F
Ambassidae	Ambassis interrupta	long-spined glassfish	2	11.1
Ambassidae	Ambassis macleayi	Macleay's glassfish	11	61.1
Ambassidae	Ambassis sp. NW	northwest glassfish	4	22.2
Ambassidae	Denariusa bandata	pennyfish	4	22.2
Apogonidae	Glossamia aprion	mouth almighty	16	88.9
Ariidae	Hemiarius dioctes	warrior catfish	1	5.6
Ariidae	Neoarius graeffei	blue catfish	5	27.8
Ariidae	Neoarius leptaspis	salmon catfish	6	33.3
Atherinidae	Craterocephalus stercusmuscarum	fly-specked hardyhead	11	61.1
Belonidae	Strongylura krefftii	freshwater longtom	11	61.1
Carcharhinidae	Carcharhinus leucas	bull shark	2	11.1
Clupeidae	Nematalosa erebi	bony bream	14	77.8
Eleotridae	Butis butis	crimsontip gudgeon	1	5.6
Eleotridae	Hypseleotris compressa	empire gudgeon	2	11.1
Eleotridae	Mogurnda mogurnda	northern purple-spotted gudgeon	8	44.4
Eleotridae	Oxyeleotris lineolata	sleepy cod	14	77.8
Eleotridae	Oxyeleotris nullipora	poreless gudgeon	3	16.7
Eleotridae	Oxyeleotris selheimi	giant gudgeon	9	50.0
Eleotridae	Prionobutis microps	smalleye gudgeon	1	5.6
Engraulidae	Thryssa brevicauda	freshwater anchovy	1	5.6
Engraulidae	Thryssa malabarica	freshwater anchovy	1	5.6
Gobiidae	Caragobius rubristriatus	worm goby	1	5.6
Gobiidae	Glossogobius aureus	golden flathead goby	2	11.1
Gobiidae	Glossogobius munroi	square blotch goby	5	27.8
Gobiidae	Periophthalmus weberi	Weber's mudskipper	1	5.6
Kurtidae	Kurtus gulliveri	nurseyfish	2	11.1
Latidae	Lates calcarifer	barramundi	12	66.7
Megalopidae	Megalops cyprinoides	oxeye herring	13	72.2
Melanotaeniidae	Melanotaenia nigrans	blackbanded rainbowfish	3	16.7
Melanotaeniidae	Melanotaenia splendida inornata	chequered rainbowfish	16	88.9
Mugilidae	Planiliza ordensis	Ord River mullet	13	72.2
Osteoglossidae	Scleropages jardinii	northern saratoga	9	50.0
Plotosidae	Anodontiglanis dahli	toothless catfish	1	5.6
Plotosidae	Neosilurus ater	black catfish	8	44.4
Plotosidae	Neosilurus hyrtlii	Hyrtl's catfish	4	22.2
Plotosidae	Porochilus rendahli	Rendahl's catfish	4	22.2
Soleidae	Leptachirus darwinensis	Darwin sole	3	16.7
Synbranchidae	Ophisternon gutturale	swamp eel	3	16.7
Terapontidae	Amniataba percoides	barred grunter	14	77.8

Table 18. List of fish species detected by biodiversi	ty surveys at 18 sites in the Adelaide River catchment.
---	---

Ecological assessment of the Adelaide River catchment

Family	Species name	Common name	F	% F
Terapontidae	Hephaestus fuliginosus	sooty grunter	6	33.3
Terapontidae	Leiopotherapon unicolor	spangled perch	7	38.9
Terapontidae	Syncomistes butleri	sharpnose grunter	6	33.3
Toxotidae	Toxotes chatareus	sevenspot archerfish	14	77.8
Toxotidae	Toxotes lorentzi	primitive archerfish	6	33.3
Zenarchopteridae	Zenarchopterus caudovittatus	long-jaw river garfish	1	5.6

6.3.2.2. Aquatic and semiaquatic reptiles

Seven species of aquatic and semiaquatic reptiles were recorded at survey sites in the study area (Table 19). Turtles were not well sampled, with only 17 individuals recorded from ten survey sites, a result largely attributable to the suboptimal timing of the sampling effort. There is some uncertainty associated with the identification of captured turtles belonging to the genus *Elseya*. They were tentatively identified as *Elseya flaviventralis*, based on the yellow coloration and lack of dark markings on the plastron (Figure 28). The Flora and Fauna Division database includes a single record of Worrell's turtle *Emydura subglobosa worrelli* from Fogg Dam photographed on 12 November 2009 (iNaturalist record 341962). All *Emydura specimens captured* in the present survey were identified as northern yellow-faced turtle *E. tanybaraga*. These species, *E. subglobosa worrelli* and *E. tanybaraga*, are difficult to distinguish consistently in the field (Georges and Thomson 2010).

Figure 28. (a) and (b) plastron of yellow-bellied snapping turtle *Elseya flaviventralis*; (c) facial features of northern yellow-faced turtle *Emydura tanybaraga* showing yellow facial stripe; note iris with leading and trailing dark spots.

Table 19. List of aquatic and semiaquatic reptiles detected during biodiversity surveys of 18 sites in the Adelai	ide
River catchment.	

Family	Species name	Common name	F	% F
Acrochordidae	Acrochordus arafurae	Arafura file snake	1	5.6
Chelidae	Chelodina rugosa	northern snake-necked turtle	1	5.6
Chelidae	Elseya flaviventralis	yellow-bellied snapping turtle	4	22.2
Chelidae	Emydura tanybaraga	northern yellow-faced turtle	6	33.3
Crocodylidae	Crocodylus johnstoni	freshwater crocodile	1	5.6
Crocodylidae	Crocodylus porosus	saltwater crocodile	7	38.9
Varanidae	Varanus mertensi	Mertens' water monitor	1	5.6

6.3.2.3. Decapod crustacea

Eight species of decapod crustacea were recorded in the study area, including four species in the atyid genus *Caridina*, and three species in the palaemonid genus *Macrobrachium* (Table 20). The most frequently recorded species were northern river prawn *Macrobrachium bullatum*, 14 sites, 77.8%; and the cherabin *Macrobrachium spinipes*, 10 sites, 55.6%. Cherabin are a marker for connectivity with estuarine waters: larvae are shed from ovigerous females in freshwater and are transported to saline reaches for development in the wet season. Juveniles undertake a recruitment migration in late March and April. The Atlas of Living Australia includes records of three species of *Macrobrachium*, and the estuarine species *M. equidens*. There are no records of Handschin's river prawn *M. handschini* (they have been recorded in the adjacent Daly and Darwin river catchments).

Family	Species name	Common name	F	% F
Atyidae	Caridina magnovus		8	44.4
Atyidae	Caridina nilotica		8	44.4
Atyidae	Caridina wilkinsi		8	44.4
Atyidae	Caridina wilsoni		8	44.4
Palaemonidae	Macrobrachium spinipes	cherabin	10	55.6
Palaemonidae	Macrobrachium bullatum	northern river prawn	14	77.8
Palaemonidae	Macrobrachium sp.		1	5.6
Parastacidae	Cherax quadricarinatus	redclaw crayfish	5	27.8

Table 20. List of decapod species detected during biodiversity surveys of 18 sites in the Adelaide River catchment.

6.3.3. Spatial patterns of species richness

For fish, species richness per site ranged from 11 to 25 (Table 21), with a median site richness of 15. Three sites featured a fish species tally of more than 20 species, including site AR01 (21 species, class 3.2), site AULD (22 species, class 3.3) and site AGLN (25 species, class 4). For each of these, the rarefaction curve of sampling effort and richness approached the asymptote (Figure 26), suggesting that few additional species would have been detected with additional sampling effort by electro-fishing. At each of these, additional species were detected primarily by sampling in shallow edge habitats with a scoop net. For site AGLN, additional species include *Hypseleotris compressa*, *Oxyeleotris nullipora*, and *Mogurnda mogurnda*; for site AULD, additional species include *Mogurnda mogurnda*, *Oxyeleotris nullipora* and *Toxotes chatareus*; and for site AR01 *Mogurnda mogurnda*.

For all aquatic taxa, species richness per site ranged from 14 to 32, with a median site richness of 20. Three sites featured a species tally of more than 25 species, including site AR01 (26 species, class 3.2), site AULD (27 species, class 3.3) and site AGLN (32 species, class 4). Site BHRF (class 5) featured the lowest values of fish (13) and total aquatic (14) species richness (Figure 29). Highest values for both fish species richness, and all aquatic taxa species richness, occur in the lower reaches in habitat classes 3.2, 3.3 and 4 (Table 21, Figure 30 and Figure 31).

Site	Site code	Habitat class	Fish	Decapod	Aquatic reptile	All taxa
ARBR	A	1	12	4	0	16
DDRF	В	1	16	6	0	22
MKXG	С	1	17	4	1	22
СМСК	D	2.1	12	4	0	16

 Table 21. Number of species in three taxa groups by site and sum of all aquatic species per site.

Ecological assessment of the Adelaide River catchment

Site	Site code	Habitat class	Fish	Decapod	Aquatic reptile	All taxa
DRRD	E	2.1	11	4	0	15
STRD	F	2.2	19	3	2	24
ARDD	G	2.2	14	6	0	20
МКВВ	Н	3.1	12	3	1	16
DLDD	I	3.1	16	2	2	20
AR03	J	3.2	16	4	2	22
AR01	к	3.2	21	4	1	26
AULD	L	3.3	22	4	1	27
DNLG	М	3.3	18	3	1	22
AGLN	N	4	25	5	2	32
BHRF	0	5	13	0	1	14
MRJN	Р	6	13	3	3	19
KSCK	Q	6	11	3	3	17
ВТСК	R	6	13	0	1	14

■ Fish ■ Decapod ■ Aquatic reptile

Figure 29. Bar-plot of number of species in three taxa groups by site.

Figure 30. Fish species richness at 18 survey sites in the Adelaide River catchment.

Figure 31. Richness of all aquatic taxa at 18 survey sites in the Adelaide River catchment.

6.3.4. Spatial patterns of abundance

A total of 5,314 individuals were recorded as caught and observed, and a total of 1,628 individuals were recorded as caught from the 18 survey sites (Table 22). Three species including chequered rainbowfish *Melanotaenia splendida inornata* 25.6%; mouth almighty *Glossamia aprion* 12.6%; and barred grunter *Amniataba percoides* 8.3%, contributed nearly half the tally of caught and observed data. Whilst chequered rainbowfish *M. splendida inornata* 20%; mouth almighty *G. aprion* 8.1%; and Macleay's glassfish *Ambassis macleayi* 6.9%, contributed about a third of the caught data tally.

Spatial variation in patterns of abundance were examined using box-plots for 16 top ranked species for caught and observed data, and for 8 top ranked species using caught data (Figure 32, Figure 33, and Figure 34).

For caught and observed data, some species are most abundant within a particular habitat class. For example, freshwater mullet *Planiliza ordensis* are most prevalent at tidal freshwater sites (class 6), and sooty grunter *Hephaestus fuliginosus* are most prevalent at riffle sites (class 1). There is high variability in the patterns of abundance of individual species, with several species particularly abundant at one or few sites. Examples include chequered rainbowfish *M. splendida inornata*; barred grunter *A. percoides*; fly-specked hardyhead *Craterocephalus stercusmuscarum*; and bony bream *Nematalosa erebi*. There is evidence the two larger members of the genus *Oxyeleotris* differ in habitat preference, with sleepy cod *O. lineolata* largely confined to unvegetated riverine channel habitats, and giant gudgeon *O. selheimi* largely confined to vegetated off-stream channel habitats (although the two were caught sympatrically in consecutive shots at one site). Results are broadly similar for electro-fishing caught data.

The patterns of species richness per shot for caught and observed and caught data are broadly similar, though marginally fewer species were recorded in the caught data. There is a marked difference in the patterns of catch per unit effort for caught and observed versus caught. The caught and observed data indicates high levels of abundance in habitat classes 3.2 and 3.3 which is not evident in the caught data (Figure 35).

		caught and observed		caught	
Family	Species name	Ν	%	Ν	%
Ambassidae	Ambassis interrupta	34	0.64	31	1.90
Ambassidae	Ambassis macleayi	281	5.29	113	6.94
Ambassidae	Ambassis sp. NW	160	3.01	11	0.68
Ambassidae	Denariusa bandata	8	0.15	8	0.49
Apogonidae	Glossamia aprion	669	12.59	131	8.05
Ariidae	Neoarius graeffei	3	0.06	2	0.12
Ariidae	Neoarius leptaspis	4	0.08	4	0.25
Atherinidae	Craterocephalus stercusmuscarum	389	7.32	62	3.81
Belonidae	Strongylura krefftii	42	0.79	23	1.41
Clupeidae	Nematalosa erebi	421	7.92	91	5.59
Eleotridae	Butis butis	1	0.02	1	0.06
Eleotridae	Hypseleotris compressa	24	0.45	11	0.68
Eleotridae	Mogurnda mogurnda	35	0.66	33	2.03
Eleotridae	Oxyeleotris lineolata	105	1.98	78	4.79
Eleotridae	Oxyeleotris selheimi	173	3.26	73	4.48
Eleotridae	Prionobutis microps	1	0.02	1	0.06

 Table 22. Numbers of 42 fish species caught and observed and caught by electro-fishing at 18 survey sites.
		caught and observed		caught	
Family	Species name	Ν	%	Ν	%
Engraulidae	Thryssa brevicauda	8	0.15	7	0.43
Engraulidae	Thryssa malabarica	1	0.02	1	0.06
Gobiidae	Caragobius rubristriatus	1	0.02	1	0.06
Gobiidae	Glossogobius aureus	3	0.06	3	0.18
Gobiidae	Glossogobius munroi	22	0.41	22	1.35
Gobiidae	Periophthalmus weberi	1	0.02	1	0.06
Hemiramphidae	Zenarchopterus caudovittatus	8	0.15	2	0.12
Kurtidae	Kurtus gulliveri	4	0.08	4	0.25
Latidae	Lates calcarifer	117	2.20	55	3.38
Megalopidae	Megalops cyprinoides	233	4.38	79	4.85
Melanotaeniidae	Melanotaenia nigrans	9	0.17	4	0.25
Melanotaeniidae	Melanotaenia splendida inornata	1,362	25.63	325	19.96
Mugilidae	Planiliza ordensis	255	4.80	104	6.39
Osteoglossidae	Scleropages jardinii	21	0.40	8	0.49
Plotosidae	Anodontiglanis dahli	1	0.02	1	0.06
Plotosidae	Neosilurus ater	76	1.43	37	2.27
Plotosidae	Neosilurus hyrtlii	3	0.06	3	0.18
Plotosidae	Porochilus rendahli	36	0.68	23	1.41
Soleidae	Leptachirus darwinensis	16	0.30	11	0.68
Synbranchidae	Ophisternon gutturale	4	0.08	1	0.06
Terapontidae	Amniataba percoides	439	8.26	89	5.47
Terapontidae	Hephaestus fuliginosus	89	1.67	68	4.18
Terapontidae	Leiopotherapon unicolor	101	1.90	37	2.27
Terapontidae	Syncomistes butleri	35	0.66	25	1.54
Toxotidae	Toxotes chatareus	81	1.52	31	1.90
Toxotidae	Toxotes lorentzi	38	0.72	13	0.80
number of species		42		42	
total abundance		5,314		1,628	

Barred Grunter n=439, 8.26%

Fly-specked Hardyhead n=389, 7.32%

Mouth Almighty n=669, 12.59%

Bony Bream n=421, 7.92%

Macleay's Glassfish n=281, 5.29%

Figure 32. Boxplots of abundance of species ranked 1 to 8, using caught and observed electro-fishing data.

Barramundi n=117, 2.20%

Spangled Grunter n=101, 1.90%

Sevenspot Archerfish n=81, 1.52%

Black Catfish n=76, 1.43%

в ċ b Ė Ė Ġ Ĥ j ĸ Ŵ. ŃÓP ģ Ŕ

Å

÷.

Ĺ

Figure 33. Boxplots of abundance of species ranked 9 to 16, using caught and observed electro-fishing data.

Northwest Glassfish n=160, 3.01%

Sleepy Cod n=105, 1.98%

Sooty Grunter n=89, 1.67%

20 15

10

5

CPUE

Macleay's Glassfish n=113, 6.94%

Bony Bream n=91, 5.59%

Barred Grunter n=89, 5.47%

в́с́ b́ Ė́ F́ Ġ́ H́

Á

÷.

JKĹMŃŎPQ

Ŕ

Figure 34. Boxplots of abundance of species ranked 1 to 8, using caught electro-fishing data.

Chequered Rainbowfish n=325, 19.96%

Mouth Almighty n=131, 8.05%

Freshwater Mullet n=104, 6.39%

15-

10

5

CPUE

Figure 35. Boxplots of catch per unit effort abundance and species richness for caught and observed and caught electro-fishing data.

6.3.5. Multivariate analyses of spatial variation

CLUSTER classification of the catch per unit effort caught dataset identified six discrete groups, with one group represented by a single site (Figure 36).

Group 1: consists of three sites in riffle habitats in the river channel (ARBR, DDRF and MKXG). An average of 11.3 species was detected; characteristic species include sooty grunter *Hephaestus fuliginosus*, chequered rainbowfish *Melanotaenia splendida inornata* and sleepy cod *Oxyeleotris lineolata*.

Group 2: consists of a single site (BHRF) on a floodplain channel with a history of use by cattle and buffalo and extensive cover of introduced pasture grasses. Eleven fish species were recorded. Water quality was poor, with high chlorophyll, total nitrogen and turbidity, and low surface dissolved oxygen levels.

Group 3: consists of five sites (AR03, DRRD, MKBB, STRD and DLDD) in habitat classes 2.1, 2.2, 3.1 and 3.2. An average of 11.8 species was detected; characteristic species include chequered rainbowfish *M. splendida inornata*, Macleay's glassfish *Ambassis macleayi*, and mouth almighty *G. aprion*.

Group 4: consists of four sites (AULD, DNLG, ARO1 and AGLN) in habitat classes 3.2, .3.3 and 4. An average of 17.8 species was detected; characteristic species include mouth almighty *Glossamia aprion*, giant gudgeon *Oxyeleotris selheimi*, and chequered rainbowfish *Melanotaenia splendida inornata*. Primitive archerfish *Toxotes lorentzi* and northern saratoga *Scleropages jardinii* were recorded at all four sites.

Group 5: consists of two sites (ARDD, CMCK and MRJN) in habitat classes 2.1, 2.2 and 6. An average of 10.7 species was recorded; characteristic species include barramundi *Lates calcarifer*, oxeye herring *Megalops cyprinoides*, and freshwater mullet *Planiliza ordensis*.

Group 6: consists of two of the three tidal freshwater sites (KSCK and BTCK). An average of 10.5 species was recorded; characteristic species include freshwater mullet *Planiliza ordensis*, long-spined glassfish *Ambassis interrupta*, and sevenspot archerfish *Toxotes chatareus*.

Table 23 lists characteristic species for each CLUSTER group as identified by SIMPER analysis.

Figure 36. Shade-plot of abundance of fish species at 18 survey sites, based on caught electro-fishing data. Data were standardised per shot and transformed using square root prior to analysis.

Table 23. Characteristic species in site groups as identified from CLUSTER and SIMPER analyses of fish abundance at18 survey sites, based on caught electro-fishing data.

			CLUSTER group		
Species name	1	3	4	5	6
Hephaestus fuliginosus	1				
Melanotaenia splendida	2	1	3	4	
Oxyeleotris lineolata	3	4		5	
Glossamia munroi	4				
Mogurnda mogurnda	5				
Megalops cyprinoides			5	2	
Nematalosa erebi			4		
Lates calcarifer				1	
Ambassis macleayi		2	6		
Glossamia aprion		3	1		
Amniataba percoides		5	8		
Oxyeleotris selheimi			2		
Planiliza ordensis			7	3	1
Ambassis interrupta					2
Craterocephalus stercusmuscarum			9		

	CLUSTER group				
Species name	1	3	4	5	6
Toxotes chatareus					3
Number of sites	3	5	4	3	2
	1_ARBR	2.1_DRRD	3.3_AULD	2.2_ARDD	6_KSCK
	1_MKXG	3.1_MKBB	3.3_DNLG	2.1_CMCK	6_BTCK
	1_DDRF	3.2_AR03	3.2_AR01	6_MRJN	
		3.1_DLDD	4_AGLN		
		2.2_STRD			

6.4. Discussion

This study represents the first systematic effort to describe patterns of fish diversity in the Adelaide River catchment. The adequacy of the sampling effort can be assessed by three measures (i) habitat representation, (ii) rarefaction curves, and (iii) proportion of expected species. The distribution of survey effort was restricted to the upper and middle reaches of the catchment, and additional sampling is required in lagoons and backswamps of the lower floodplain to build a more comprehensive view of the distribution of biodiversity values. Priority sites for sampling include Bald Hill Lagoon, Tommy Policeman Lagoon, and Scott's Creek in Djukbinj National Park. Rarefaction curves suggested that species richness was asymptotic for a given effort at 6 of the 18 sites, and that further sampling may have detected additional species. Surveys detected 45 of the 83 species known or expected to occur in freshwater or tidal freshwater reaches of the Adelaide River. Twenty-five euryhaline species were not detected, and additional targeted surveys are required.

Quantitative surveys using electro-fishing detected 42 fish species, with an additional three fish species detected by other sampling methods. Fish assemblages are structured by habitat and position in the catchment. The most diverse sites tend to be structurally diverse with a well developed macrophyte fringe and lack of extensive invasive grass cover. These results align with observations of fish diversity in floodplain lagoons of the Wet Tropics (Arthington *et al.* 2014). These lagoon habitats were regarded as in good ecological condition because of retention of riparian vegetation and frequent flushing by high stream flows. Assemblage composition differed with distance from the coast, position on the floodplain, water quality and habitat. The present study found 29 native fish species in four floodplain lagoons (AGLN, AR01, DNLG and AULD); Arthington *et al.* (2014) found 21 native fish species in ten lagoon sites.

Riffle habitats provide habitat for a small but distinctive subset of the riverine channel fish fauna. Juvenile grunters, in particular sooty grunter *Hephaestus fuliginosus*, are dependent on shallow flowing habitats (Keller *et al.* 2019, Crook *et al.* 2021). Other species frequently detected in riffle habitats include other terapontid species, and square blotch goby *Glossogobius munroi*. Riffle habitats are vulnerable to reduction in dry season flow and are eliminated under cease to flow conditions.

Exquisite rainbowfish *Melanotaenia exquisita* are known from isolated escarpment areas in the NT and the east Kimberley in Western Australia, including sites in a small area in the upper reaches of the Adelaide River (Hammer and Golding 2017), which were not sampled in this survey. Specimens of spotted blue-eye *Pseudomugil gertrudae* were collected during opportunistic sampling at Anniversary Creek in the upper portion of the catchment on 23 August 2024; another swamp specialist, Obbes' catfish *Porochilus obbesi*, has been previously recorded from this site (MAGNT records). Similarly, specimens of delicate blue-eye *Pseudomugil tenellus* were collected during opportunistic sampling in a remnant channel on Beatrice Hill Research Farm on 21 August 2024.

The genus *Ophisternon* is a species-complex and genetic identification is required to confirm species identity. There are two species present in the Adelaide River, and consequently the identification of specimens as *Ophisternon gutturale* requires DNA confirmation. Similarly, the identification of juvenile engraulids from site BTCK as *Thryssa brevicauda* requires DNA confirmation.

7. Environmental DNA

7.1. Introduction

The detection of DNA fragments in environmental samples offers a cost effective and rigorous method of biodiversity inventory (Baird and Hajibabaei 2012, Huerlimann *et al.* 2020). The method depends on the availability of reference DNA gene sequences for accurate identification of species, and on the ability of reference sequences to discriminate among closely related species. Building the DNA reference library for Top End aquatic fauna is currently the focus of a funded research collaboration between Charles Darwin University and the MAGNT. The present study conducted eDNA sampling at each site to allow assessment of the current capacity of the method, and to identify gaps in species coverage.

Specifically, this study sought to:

- (i) detect species of aquatic vertebrates and decapods using metabarcoding assays
- (ii) detect threatened largetooth sawfish Pristis pristis using qPCR
- (iii) compare results for different methods of sample collection.

7.2. Methods

Environmental DNA samples were collected at 18 sites prior to the commencement of other sampling activities. On each sampling occasion, 3 or 4 filtered samples were collected using 5 μ m self-preserving Smith Root filters and an extendable sampling pole. Samples were collected from undisturbed water in advance of a small boat moving forward at low speed. A control sample using ultrapure water was collected using the same sampling equipment prior to the collection of other samples. Filters were refrigerated after collection until delivery to a commercial laboratory.

Vertebrate and decapod metabarcoding assays were used to screen eDNA samples. The decapod assay used miDeca primers for the 16S rRNA gene (Komai *et al.* 2019). DNA was extracted from filters using a Qiagen PowerSoil Kit that minimises compounds that can inhibit PCR reactions in environmental samples. Library construction involved two rounds of PCR, whereby the first round employed gene-specific primers to amplify the target region and the second round incorporated sequencing adapters and unique barcodes for each sample-amplicon combination included in the library. Negative controls were included during library construction. Negative controls consisted of the extraction negative as well as PCR negatives, in which nuclease-free water was used in place of DNA during both rounds of PCR. Sequencing was carried out on an Illumina sequencing platform.

Following quality control filtering to remove primer sequences, truncated reads, and low-frequency reads, DNA sequences were clustered into OTU's on the basis of sequence similarity. Taxonomic assignment was performed with VSEARCH software (Rognes *et al.* 2016), whereby each OTU cluster was assigned a species identity using a threshold of 95% by comparing against a reference sequence database. Where a species could not be assigned (that is reference database was deficient or taxa were poorly-characterised), taxonomic assignments were manually vetted by first obtaining a list of possible species through BLASTN searches against the public repository Genbank, followed by elimination of species on the basis of their geographic distributions, using information from the Atlas of Living Australia. In cases where an OTU could not be adequately resolved to a single species (for example due to shared haplotypes), either a list of multiple species is included, or the OTU is assigned to the lowest taxonomic rank without further classification. Separate bioassays were conducted for the detection of largetooth sawfish *Pristis pristis* using qPCR.

Environmental DNA samples were collected on two separate occasions from Dash Lagoon (site DLDD) using a Smith-Root backpack sampler. On 6 August 2024 samples were collected from the bank at three discrete points along the waterbody ('point'); on 17 August 2024 three samples were collected mid-stream from a small boat moving slowly forward ('composite'). An extendable sampling pole was used on both occasions.

Data are presented on the frequency of detection of OTU's identified by eDNA, truncated to the level of family. Fish species detected by concurrent biodiversity survey and not detected by eDNA are listed.

7.3. Results

eDNA metabarcoding bioassays identified 94 taxa from 18 sites in the Adelaide River catchment (Table 24). Fifty-eight taxa were identified to species-level, 61.7%; though six taxa are only identified to species 'type'. Twenty-three of 45 fish species detected by biodiversity surveys were not detected by eDNA (Table 26). Of these, eight of 23: 34.8%, were obligate freshwater species, and 15 of 23: 65.2%, were euryhaline species.

eDNA failed to discriminate the common terapontid species spangled perch *Leiopotherapon unicolor*, and barred grunter *Amniataba percoides*; as well as the melanotaeniid species chequered rainbowfish *Melanotaenia splendida inornata*, and blackbanded rainbowfish *M. nigrans*. Other problem taxa include ariid catfish, which were detected at the level of family at 14 of 18 sites. Two of the six ariidae species, known or suspected to occur in the catchment, were detected by eDNA, that is *Neoarius graeffei* and *N. berneyi*. The presence of *N. berneyi* in the catchment however is yet to be confirmed and may be an artefact of the current reference library; *N. leptaspis* was not detected; and smallmouth catfish *Cinetodes froggatti* have been recorded from previous biodiversity surveys in the catchment but were not detected.

There were detections of 44 OTU's of non-fish vertebrates, including 22 birds and 12 mammals (Table 25). There were species-level detections of three species of cormorant, but no species-level detections of egrets. Detections for three species (wood duck *Chenonetta jubata*; painted honeyeater *Grantiella picta*; and bearded mudskipper *Scartelaos histophorus*) are likely to be erroneous based on known habitat and distribution. Other questionable detections include sheep *Ovis aries*, and chicken *Gallus gallus*. There was no evidence of in-field contamination in control samples.

Some OTU names can be matched to species with high probability (Table 27).

Taxon	Family	Genus	Species	Common name	F
amphibians	Bufonidae	Rhinella	Rhinella marina	cane toad	10
amphibians	Hylidae	Litoria	Litoria inermis	bumpy rocketfrog	1
amphibians	Hylidae	Litoria		genus of Australasian tree frogs	2
amphibians	Hylidae	Litoria	Litoria nasuta	striped rocket frog	2
amphibians	Myobatrachidae			family of Australian ground frogs	3
birds	Acanthizidae	Gerygone		genus of peep-warblers	1
birds	Alcedinidae			family of kingfishers	1
birds	Anatidae			order of waterbirds that includes ducks, geese and swans	4
birds	Anatidae	Chenonetta	Chenonetta jubata	Australian wood duck	1
birds	Anatidae	Dendrocygna	Dendrocygna arcuata	wandering whistling-duck	2
birds	Anhingidae			order of Australian darter	1

 Table 24. List of taxa identified using eDNA analysis of samples from 18 sites in the Adelaide River catchment.

Taxon	Family	Genus	Species	Common name	F
birds	Anseranatidae	Anseranas	Anseranas semipalmata	magpie goose	1
birds	Ardeidae	Ardea		genus of herons	1
birds	Ardeidae	Bubulcus	Bubulcus ibis	cattle egret	3
birds	Ardeidae	Ixobrychus	Ixobrychus flavicollis	black bittern	1
birds	Ardeidae	Nycticorax	Nycticorax caledonicus	nankeen night heron	5
birds	Cacatuidae	Cacatua	Cacatua galerita	sulphur-crested cockatoo	2
birds	Meliphagidae			family of honeyeaters	2
birds	Meliphagidae	Grantiella	Grantiella picta	painted honeyeater	1
birds	Meliphagidae	Myzomela		genus of honeyeaters	1
birds	Monarchidae			family of shrikebills, paradise flycatchers, magpie-larks	1
birds	Phalacrocoracidae			family of cormorants	1
birds	Phalacrocoracidae	Microcarbo	Microcarbo melanoleucos	little pied cormorant	6
birds	Phalacrocoracidae	Phalacrocorax	Phalacrocorax sulcirostris	little black cormorant	1
birds	Phalacrocoracidae	Phalacrocorax	Phalacrocorax varius	pied cormorant	1
birds	Phasianidae	Gallus	Gallus gallus	chicken	2
birds	Threskiornithidae	Threskiornis		genus of ibis	2
decapods	Atyidae	Caridina	Caridina wilkinsi	freshwater atyid shrimp	3
decapods	Atyidae	Caridina	Caridina sp.	freshwater atyid shrimp	4
decapods	Atyidae	Caridina	Caridina sp. Gulf1	freshwater atyid shrimp	1
decapods	Atyidae	Caridina	Caridina sp. WA4	freshwater atyid shrimp	6
decapods	Atyidae	Caridina		genus of freshwater atyid shrimp	3
decapods	Palaemonidae	Macrobrachium	Macrobrachium sp. Blackmore	freshwater prawns and shrimps	1
decapods	Palaemonidae	Macrobrachium	Macrobrachium spinipes	giant freshwater prawn	4
decapods	Palaemonidae	Macrobrachium	Macrobrachium bullatum	northwest Australian river prawn	3
decapods	Parastacidae	Cherax		genus of yabbies	3
decapods	Parastacidae	Cherax	Cherax quadricarinatus	redclaw crayfish	2
decapods	Parastacidae	Cherax	Cherax sp.1	species of yabby	5
decapods	Sesarmidae				1
fish	Ambassidae	Ambassis		genus of glassfish	4
fish	Ambassidae	Ambassis	Ambassis sp.	genus of glassfish	7
fish	Ambassidae	Ambassis	Ambassis macleayi	Macleay's glass fish	15
fish	Ambassidae	Denariusa		genus of glassfish	4
fish	Apogonidae	Glossamia	Glossamia aprion	mouth almighty	17
fish	Ariidae			family of catfish	14
fish	Ariidae	Neoarius	Neoarius graeffei	blue salmon catfish	4
fish	Ariidae	Neoarius	Neoarius berneyi	highfin catfish	8

Taxon	Family	Genus	Species	Common name	F
fish	Atherinidae	Craterocephalus		genus of silversides, hardyheads	8
fish	Belonidae	Strongylura		genus of needlefish	14
fish	Clupeidae	Nematalosa	Nematalosa erebi	bony bream	16
fish	Eleotridae	Hypseleotris		genus of carp gudgeons	4
fish	Eleotridae	Mogurnda	Mogurnda mogurnda	northern purple spotted gudgeon	9
fish	Eleotridae	Oxyeleotris	Oxyeleotris selheimi	blackbanded gudgeon	9
fish	Eleotridae	Oxyeleotris	Oxyeleotris nullipora	poreless gudgeon	2
fish	Eleotridae	Oxyeleotris	Oxyeleotris lineolata	sleepy cod	13
fish	Eleotridae	Prionobutis	Prionobutis microps	smalleye gudgeon	3
fish	Engraulidae	Thryssa		genus of anchovy	1
fish	Gobiidae			family of goby	1
fish	Gobiidae	Glossogobius		genus of goby	10
fish	Gobiidae	Glossogobius	Glossogobius aureus	golden flathead goby	7
fish	Gobiidae	Scartelaos	Scartelaos histophorus	bearded mudskipper	1
fish	Latidae	Lates	Lates calcarifer	barramundi	15
fish	Megalopidae	Megalops	Megalops cyprinoides	oxeye herring	15
fish	Melanotaeniidae	Melanotaenia		genus of rainbowfishes	15
fish	Mugilidae	Planiliza	Planiliza ordensis	diamond mullet	15
fish	Osteoglossidae	Scleropages	Scleropages jardinii	northern saratoga	3
fish	Plotosidae	Neosilurus	Neosilurus ater	black catfish, narrow-fronted tandan	16
fish	Plotosidae	Neosilurus		genus of catfish	10
fish	Plotosidae	Neosilurus	Neosilurus hyrtlii	hyrtl's catfish	7
fish	Plotosidae	Porochilus	Porochilus rendahli	rendahl's catfish	4
fish	Soleidae			family of soles	4
fish	Synbranchidae	Ophisternon	Ophisternon gutturale	Australian swamp eel	4
fish	Synbranchidae	Ophisternon		genus of swamp eel	10
fish	Terapontidae	Hephaestus	Hephaestus fuliginosus	sooty grunter	10
fish	Terapontidae	Syncomistes	Syncomistes butleri	sharpnose grunter	13
fish	Terapontidae			family of grunters	15
fish	Toxotidae	Toxotes	Toxotes chatareus	sevenspot archerfish	13
mammals	Bovidae			family of ruminants including cattle	2
mammals	Bovidae	Bos	Bos taurus	cattle	2
mammals	Bovidae	Bubalus	Bubalus bubalis	water buffalo	6
mammals	Bovidae	Ovis	Ovis aries	sheep	1
mammals	Canidae	Canis	Canis lupus	dog or dingo	1
mammals	Macropodidae	Notamacropus		genus of small marsupials	8

Taxon	Family	Genus	Species	Common name	F
mammals	Macropodidae	Osphranter	Osphranter antilopinus	antilopine kangaroo	1
mammals	Macropodidae	Osphranter		genus of large kangaroos	1
mammals	Muridae	Melomys	Melomys burtoni	grassland melomys	2
mammals	Pteropodidae	Pteropus		genus of flying foxes	3
mammals	Suidae	Sus	Sus scrofa	pig	1
mammals	Vespertilionidae	Nyctophilus		genus of Australian big-eared bats	1
reptiles	Acrochordidae	Acrochordus	Acrochordus arafurae	Arafura file snake	2
reptiles	Chelidae	Chelodina	Chelodina oblonga	northern snake-necked turtle	2
reptiles	Chelidae	Elseya		Australian snapping turtles	6
reptiles	Chelidae	Emydura		Australian short-necked turtles	4
reptiles	Crocodylidae	Crocodylus	Crocodylus porosus	saltwater crocodile	3

Table 25. Numbers of OTU's derived from eDNA analysis, number of species-level identifications, and percentage of species-level identifications.

Taxon	OTU	Species-level	%
amphibians	5	3	60
birds	22	12	55
decapods	12	9	75
fish	38	24	63
mammals	12	7	58
reptiles	5	3	60
total	94	58	62

Table 26. List of fish species collected during biodiversity surveys of 18 sites in Adelaide River catchment in August2024, and not detected by eDNA.

Family	Species name	Common name
Ambassidae	Ambassis interrupta	long-spined glassfish
Ambassidae	Ambassis sp. NW	northwest glassfish
Ariidae	Hemiarius dioctes	warrior catfish
Ariidae	Neoarius leptaspis	salmon catfish
Atherinidae	Craterocephalus stercusmuscarum	fly-specked hardyhead
Belonidae	Strongylura krefftii	freshwater longtom
Carcharhinidae	Carcharhinus leucas	bull shark
Eleotridae	Butis butis	crimsontip gudgeon
Eleotridae	Hypseleotris compressa	empire gudgeon
Engraulidae	Thryssa brevicauda	freshwater anchovy
Engraulidae	Thryssa malabarica	freshwater anchovy
Gobiidae	Caragobius rubristriatus	worm goby
Gobiidae	Glossogobius munroi	square blotch goby
Gobiidae	Periophthalmus weberi	Weber's mudskipper

Kurtidae	Kurtus gulliveri	nurseryfish
Melanotaeniidae	Melanotaenia nigrans	blackbanded rainbowfish
Melanotaeniidae	Melanotaenia splendida inornata	chequered rainbowfish
Plotosidae	Anodontiglanis dahli	toothless catfish
Soleidae	Leptachirus darwinensis	Darwin sole
Terapontidae	Amniataba percoides	barred grunter
Terapontidae	Leiopotherapon unicolor	spangled perch
Toxotidae	Toxotes lorentzi	primitive archerfish
Zenarchopteridae	Zenarchopterus caudovittatus	long-jaw river garfish

 Table 27. List of OTU names from eDNA analysis and probable species-level identifications.

Taxon	OTU name	Probable species name
birds	Anhingidae	Anhinga novaehollandiae
fish	Denariusa	Denariusa bandata
fish	Strongylura	Strongylura krefftii
mammals	Notamacropus	Notamacropus agilis
reptiles	Elseya	Elseya flaviventralis

7.3.1. qPCR bioassay for largetooth sawfish

There were no positive qPCR detections for largetooth sawfish *Pristis pristis*, with the exception of an equivocal result for one replicate at site DRRD.

7.3.2. Comparison of eDNA collection method

Thirty-one taxa were identified in samples batches collected by point and composite sampling in Dash Lagoon (Table 28). Twenty of 31 OTU's were identified to species-level. Twenty-five taxa were identified from three bankside point samples; twenty-seven taxa were identified from three roaming composite samples; twenty-one taxa were detected by both methods. Bankside point sample collection can substitute for mid-stream boat-based sample collection, though this may depend on habitat structure.

Table 28. List of operational taxonomic units identified in bank-side point eDNA samples, and in roaming compositeeDNA samples at site DLDD.

Family	Genus	Species	Common name	Point	Comp.
Bufonidae	Rhinella	Rhinella marina	cane toad	1	
Myobatrachidae			family of Australian ground frogs		1
Ambassidae	Ambassis	Ambassis sp.	genus of glassfish		1
Ambassidae	Ambassis	Ambassis macleayi	Macleay's glass fish	1	1
Apogonidae	Glossamia	Glossamia aprion	mouth almighty	1	1
Ariidae			family of catfish	1	1
Atherinidae	Craterocephalus		genus of silversides, hardyheads	1	1
Belonidae	Strongylura		genus of needlefish	1	1
Clupeidae	Nematalosa	Nematalosa erebi	bony bream	1	1
Eleotridae	Mogurnda	Mogurnda mogurnda	northern purple spotted gudgeon	1	
Eleotridae	Oxyeleotris	Oxyeleotris selheimi	blackbanded gudgeon	1	1

Eleotridae	Oxyeleotris	Oxyeleotris lineolata	sleepy cod	1	1
Gobiidae	Glossogobius		genus of goby	1	1
Gobiidae	Glossogobius	Glossogobius aureus	golden flathead goby	1	1
Latidae	Lates	Lates calcarifer	barramundi	1	1
Megalopidae	Megalops	Megalops cyprinoides	oxeye herring	1	1
Melanotaeniidae	Melanotaenia		genus of rainbowfishes	1	1
Osteoglossidae	Scleropages	Scleropages jardinii	northern saratoga	1	1
Plotosidae	Neosilurus	Neosilurus ater	black catfish, narrow-fronted tandan	1	1
Synbranchidae	Ophisternon	Ophisternon gutturale	Australian swamp eel		1
Synbranchidae	Ophisternon		genus of swamp eel		1
Terapontidae	Hephaestus	Hephaestus fuliginosus	sooty grunter	1	1
Terapontidae	Syncomistes	Syncomistes butleri	sharpnose grunter	1	1
Terapontidae			family of grunters	1	1
Toxotidae	Toxotes	Toxotes chatareus	sevenspot archerfish	1	1
Bovidae			family of ruminants incl. cattle	1	
Bovidae	Bos	Bos taurus	cattle		1
Bovidae	Bubalus	Bubalus bubalis	water buffalo	1	1
Chelidae	Elseya		Australian snapping turtles	1	
Chelidae	Emydura		Australian short-necked turtles	1	1
Crocodylidae	Crocodylus	Crocodylus porosus	saltwater crocodile		1

7.4. Discussion

DNA based methods are likely to assume a prominent role in monitoring aquatic and terrestrial biodiversity in northern Australia. These methods offer several advantages over conventional field-sampling methods. These advantages include cost effectiveness, reduced exposure to field hazards, and whole of waterbody sampling not influenced by method bias. This present study featured a high proportion of unassigned taxa which could not be identified to species-level. Several taxa were frequently identified only to the level of genus, for example *Melanotaenia* and *Glossogobius*; or family, for example Ariidae and Terapontidae. Three species of freshwater crayfish in the genus *Cherax* are known to occur in the Top End (Hammer *et al.* 2024), these being *C. quadricarinatus*, *C. bicarinatus* and *C. nucifraga*. The decapod metabarcoding assay identified the taxon *Cherax* sp. 1. It is unclear whether this represents an additional species, or failure to match existing described species (only *C. quadricarinatus* has been previously recorded in the Adelaide River).

The study failed to detect 23 of 45 fish species known to occur from concurrent biodiversity surveys. There are four potential factors which may account for detection failure:

- (i) the lack of reference sequence data
- (ii) shared haplotypes preventing species discrimination
- (iii) low DNA shedding by some species groups
- (iv) environmental factors.

Vertebrate bioassays using the 12S gene cannot discriminate between rainbowfish species chequered rainbowfish *Melanotaenia splendida inornata*, and black-banded rainbowfish *M. nigrans*; and between the terapontid species spangled grunter *Leiopotherapon unicolor*, barred grunter *Amniataba percoides*, and yellowtail trumpeter *Amniataba caudavittata*.

Other problematic genera include *Neoarius*, *Ambassis*, *Neosilurus* and *Hypseleotris*. Some taxa, including aquatic reptiles and elasmobranchs, shed relatively low amounts of DNA and consequently have a low probability of detection. As an example, *Carcharhinus leucas* is a relatively common species in the tidal freshwater reach of the Adelaide River but was not detected by eDNA.

qPCR analyses failed to detect largetooth sawfish *Pristis pristis*. juvenile sawfish were observed in the lower freshwater reach of the Margaret River, are known to occur in the upper reaches of the Adelaide River (D. Wedd, *pers. comm.*), and were detected by metabarcoding in samples from the Dirty Lagoon gauge station site on the Adelaide River on 18 April 2024.

8. Summary

8.1. Composition of vertebrate fauna

The vertebrate species records dataset for the Adelaide River catchment includes 171,758 individual records. Of these, 942 (<1%), were records of fish species. The dataset includes records of 243 aquatic vertebrate species and 15 threatened aquatic vertebrate species. The list of threatened aquatic vertebrate species includes seven migratory shorebird species, three elasmobranch species and three varanid species. The three elasmobranch species are potentially vulnerable to impacts from water resource development in the catchment.

8.2. Review of ecological assets

The attributes and values of ten ecological assets of the Adelaide River catchment are listed in Table 29.

Ecological asset	Attributes and values
	localised high-density nesting habitat
saltwater crocodile	monitoring of population in Adelaide River since 1977
	floodplains of Adelaide and Mary important nesting areas
	consistent monitoring of geese numbers and nests since 2011
magpie geese	8.2% of Top End magpie geese numbers
	14.7% of Top End magpie geese nests
	Euryhaline species threatened globally
euryhaline elasmobranchs	Adelaide River is a stronghold for three threatened elasmobranch species
and an effective design of the	habitat for nationally significant numbers of migratory shorebirds
migratory birds	42 JAMBA/CAMBA listed species
	76 breeding sites for 15 colonial breeding waterbird species in Top End
colonial breeding waterbirds	3 active colonies in Adelaide River catchment, including potentially largest regular egret colony in Australia
· · · · ·	2% of NT rainforest estate
monsoon rainforest	one of six clusters of patches required to capture rare endemic rainforest species

Table 29.	Summary	of key e	ecological	assets of	aquatic	systems	of A	Adelaide	River	catchment	•
-----------	---------	----------	------------	-----------	---------	---------	------	----------	-------	-----------	---

	83 known or probable species from freshwater and tidal freshwater
tidal freshwater fish	50 of 83 fish species euryhaline or diadromous
	characteristic suite of tidal freshwater species; salinity requirements of early life stages of these species mostly unknown
	7 diadromous fish species including barramundi, oxeye herring, and largetooth sawfish
migratory aquatic species	diadromous decapods including cherabin and some Caridina species
	several species undertake large-scale within-system movements
	26 species in Adelaide River catchment
frogs	threatened Howard River toadlet restricted to sandsheet heath
nogs	16 year survey of four frog species in Fogg Dam Reserve found abrupt and asynchronous changes not clearly linked to rainfall patterns
	long-term studies from 1991 of predator-prey system in Fogg Dam Reserve area
water python and dusky rat	population dynamics driven by rainfall pattern
	catastrophic system collapse after flood events in 2007 and 2011

8.3. Spatial variation in water quality

Data on water quality parameters were collected concurrently with surveys of aquatic biodiversity at 18 sites in the Adelaide River catchment. Differences in electrical conductivity and ionic composition reflect differences in hydrogeology across the catchment. Conductivity of the Adelaide River within the freshwater reach from Adelaide River township to the tidal limit at Marrakai Crossing averaged 261.4 μ S/cm. The conductivity of off-stream channels averaged 46.2 μ S/cm, reflecting the influence of wet season floodwaters on these waterbodies. Values of chlorophyll *a*, total nitrogen, total phosphorus and turbidity tended to be relatively low and invariable in freshwater riverine sites, but high and variable at off-stream channel sites. The single site with a history of substantial impacts from domestic stock featured high values of chlorophyll *a*, total nitrogen and turbidity, and low values of dissolved oxygen. The historic baseline of water quality data for much of the catchment is meagre and therefore insufficient to assess long-term temporal trends.

8.4. Spatial variation in aquatic biodiversity

The composition of the aquatic vertebrate and decapod crustacean fauna was systematically surveyed at 18 sites in the Adelaide River catchment. Sites spanned the range of available habitats that could be accessed. Forty-five of the 83: 54.2%, fish species known or thought to occur in the freshwater and tidal freshwater reaches of the Adelaide River were detected by this survey. This included 24 primarily freshwater species, 18 euryhaline species, and three diadromous species. The most frequently recorded species were chequered rainbowfish *Melanotaenia splendida inornata*, 16 sites: 88.9%, and mouth almighty *Glossamia aprion*, 16 sites: 88.9%. Further work is required to elucidate the composition and distribution of fish species in the tidal freshwater reach, and of lagoons of the lower floodplain.

Seven of the eighteen known aquatic and semiaquatic reptile species were detected by the survey, and eight species of decapod crustacea including four atyid species in the genus *Caridina*, and three palaemonid species in the genus *Macrobrachium*.

Spatial patterns in aquatic biodiversity were described using data on species richness at each site; data on abundance of individual fish species; and multivariate analysis of spatial variation in fish abundance. Highest values of summed species richness were recorded in off-stream channel sites in habitat classes 3.3 and 4. Catch per unit effort data using caught and observed and caught electro-fishing data were plotted for several fish species. Catch per unit effort abundance of all fish species, and species richness per shot was highest in habitat classes 3.2 and 3.3 for caught and observed data.

Multivariate classification revealed spatial patterning in fish assemblages. CLUSTER classification identified six discrete groups corresponding to riffle sites, tidal freshwater sites, riverine and off-stream sites with little or no fringing macrophytes, off-stream channel sites with submerged and floating macrophytes, and an impacted floodplain lagoon site. The SIMPER procedure identified characteristic species of each group.

8.5. Environmental DNA

eDNA samples collected concurrently with biodiversity surveys at 18 sites identified 94 operational taxonomic units including 38 fish, 22 birds, 12 mammals and 12 decapods. Twenty-three of 45 fish species detected by biodiversity surveys were not detected by eDNA. Further work is required to discriminate fish species within the families Melanotaeniidae and Terapontidae. There were no detections of largetooth sawfish *Pristis pristis*. A trial of two eDNA sample collection methods found minimal differences in species detection.

9. Conclusions

The Adelaide River floodplain system provides a major breeding area for magpie goose Anseranas semipalmata, a major breeding area for saltwater crocodile Crocodylus porosus, a major breeding area for herons and allies, a major dry season refuge area for waterbirds, and a significant migration stop-over area for shorebirds. Major breeding sites for saltwater crocodile occur in freshwater swamps on the lower Marrakai Creek, in swamps between tidal channels in the far north-west, and along Melacca Creek. Melacca Swamp provides important habitat for nesting in dense, permanently inundated tall sedgeland of Thoracostachyum sumatranum (Jaensch 1993). The floodplains encompass the most important nesting habitat for magpie goose in the NT (Bayliss and Yeomans 1990). The site includes three waterbird breeding colonies, including two in mangroves in the lower reaches of the Adelaide River (Chatto 2000). One colony supported an estimated 30,000 birds in 1994. It is believed to be the largest waterbird colony in the NT, and possibly the largest, regular egret colony in Australia. Lake Finniss is identified as an internationally important site for migratory shorebirds in the East Asian-Australasian Flyway (Bamford et al. 2008). Maximum counts of species that are internationally significant, that is >1% global population, include 12,000 little curlew (Jaensch 1994), 3,000 red-necked avocet (Chatto 2006), and 2,000 black-tailed godwits (Chatto 2003). Coastal mudflats and nearby areas support internationally significant numbers of shorebirds, and thousands of oriental pratincole Glareola maldivarum occur on the floodplain prior to the wet season.

The present study reviewed vertebrate species records for the Adelaide River catchment. The extracted dataset included 171,758 records comprising 588 vertebrate species. There were 30 threatened vertebrate species and 15 threatened aquatic vertebrate species; including three elasmobranch species which are potentially vulnerable to water resource development in the catchment. The Adelaide River is regarded as a stronghold for speartooth shark *Glyphis glyphis*, Northern river shark *Glyphis garricki*, and largetooth sawfish *Pristis pristis*.

There are long-term studies of several ecological assets which provide information on species-specific responses to climatic variation. The nature of the response varies by taxa. For the magpie goose, nesting density and timing is correlated with variation in the timing of the onset of the wet season. For the file snake, and presumably most fish, production is related to high late wet season rainfall causing prolonged inundation of the floodplain. For the water python-dusky rat predator-prey system, rat breeding and python condition, survival and recruitment are highest in years of moderate late season rainfall. Changes in frog species composition were not clearly linked to rainfall pattern.

A field survey of aquatic vertebrates including fish, and aquatic and semiaquatic reptiles, recorded 45 fish species from a known fauna of 83 species, and seven of 18 aquatic and semiaquatic reptile species, and identified spatial patterning in fish assemblages. Riverine channels, and upstream off-stream channels, provide structurally simple habitat for a core suite of a minimum of eight species. Off-stream channels with fringing macrophytes provide more structurally complex habitat for a suite of approximately 20 species. Floodplain waterbodies, through differences in hydrology, connectivity, productivity, and habitat complexity provide a heterogeneous set of habitat circumstances which underpin medium-scale diversity and resilience. Loss of heterogeneity through hydrological change and habitat modification by weed invasion may lead to loss of diversity and resilience. Effects may be multiplicative; in that reduced floodplain flows may facilitate spread and persistence of invasive grasses.

Field surveys focussed on waterbodies within and adjacent to the main channel of the Adelaide River. Large areas of aquatic habitat remain unsurveyed. The survey did not include waterbodies on the Margaret River, spring-fed streams in monsoon forest patches, grassy back-swamps on the fringes of the floodplain, nor sufficient representation of lagoons on the lower floodplain. Anecdotal information suggests that large areas of wetland habitat on the Adelaide River floodplain are dominated by invasive aquatic grasses including para grass *Urochloa mutica* and olive hymenachne *Hymenachne amplexicaulis*. Invasive pasture grasses diminish water quality, reduce fish species richness, and provide habitat for introduced fish species including siamese fighting fish *Betta splendens*.

Sampling results provide some support to the prediction that the zone of highest ecological value occurs in the middle section of the Adelaide River in an arc from Marrakai Crossing to Donald's Lagoon at the base of the floodplain. Waterbodies upstream of this arc tend to be structurally simple and resemble riverine channels; waterbodies downstream of this arc are more likely to be impacted by invasive pasture grasses. There is currently no mapping of the extent of invasive pasture grasses on the Adelaide River floodplain, nor modelling of the spatial pattern of ecological values.

The tidal freshwater reach is potentially vulnerable to the impacts of water extraction through effects on the salinity regime. Increasing salinity may cause shifts in habitat availability for fish species adapted to low salinity (Berra and Wedd 2017), increase in the upstream extent of salt-tolerant riparian vegetation, and loss of freshwater-dependent riparian vegetation. The composition and distribution of the fauna of the tidal freshwater reach is understudied and poorly known.

9.1. Recommendations for research and monitoring

9.1.1. Research

Model floodplain hydrology:

• through model simulation, establish relationships between river flow, surface run-off, and extent and duration of floodplain inundation.

Model impacts of water extraction on tidal freshwater reach:

- through modelling of flow extraction scenarios, assess consequences of water extraction on the salinity regime in the tidal freshwater reach.
- conduct comprehensive assessment of biodiversity values of the tidal freshwater reach.
- collaborate with Charles Darwin University DNA reference library project to enhance capacity for eDNA detection of tidal freshwater species.

Map floodplain vegetation:

- map floodplain plant communities with an emphasis on the distribution of the invasive pasture grasses para grass, *Urochloa mutical*, and olive hymenachne, *Hymenachne amplexicaulis*.
- investigate relationships between existing land unit mapping and recent mapping derived from classification of satellite imagery (de Mello *et al.* 2024).

Augment existing data on biodiversity values of aquatic habitats of the Adelaide River catchment:

- expand coverage of aquatic biodiversity surveys to include greater representation of floodplain and other under-represented habitats (e.g. tidal freshwater, smaller streams) with a minimum target survey effort of 30 sites.
- priority sites include lower floodplain lagoons, backswamps, waterbodies of Margaret River, and upper reaches of Adelaide River.

Investigate current status of waterbird breeding colonies:

• investigate status of waterbird breeding colonies on the Adelaide River floodplain and investigate methods for assessment of seasonal and interannual nesting activity and success.

Model spatial variability of magpie geese and magpie geese nests:

• model interannual variation in distribution of magpie geese and magpie geese nests on the Adelaide River floodplain, and patterns of floodplain inundation.

Saltwater crocodile:

• model interannual variation in recruitment, egg harvest and hydrology.

9.1.2. Monitoring

Long-term monitoring of ecological assets and processes provides assurance that the goals of management are met. Long-term data spanning the range of hydrological variability provides critical information on the responses of biota to hydrological variability. Rigorous flow-ecology relationships provide critical underpinning for river flow management.

Threatening processes on tropical floodplains of northern Australia have been well documented. The biodiversity values of remnant floodplain lagoons in the Wet Tropics of northern Queensland were assessed to be threatened by the loss of natural flow regimes and floodplain connectivity (Arthington *et al.* 2014). Invasive plants including para grass, *Urochloa mutica*, have significant negative effects on floodplain fish communities (Perna *et al.* 2012), and on floodplain plant and avifauna diversity (Ferdinands *et al.* 2005).

Targets for monitoring in the Adelaide River catchment include:

- 1. Known high conservation value sites: these occur in an arc downstream from the tidal limit from Marrakai Crossing, and include the following survey sites AR01, Acacia Gap Lagoon (AGLN), Auld's Lagoon (AULD), Donald's Lagoon (DNLG) and the unsurveyed Bald Hill Lagoon.
- 2. Vulnerable flow-dependent habitats: riffles within the main river channel support a distinctive suite of fish, and invertebrate, species. Flow reduction will lead to loss of available habitat; cease to flow conditions will temporarily eliminate this habitat.
- 3. Freshwater-dependent riparian vegetation in the tidal freshwater zone: the ingress of saline water into the upper tidal reaches may lead to community wide changes in the composition of riparian vegetation and the replacement of freshwater species with salt tolerant species.

9.2. Knowledge gaps

Further work is required to improve the utility of environmental DNA for routine monitoring of the biodiversity of waterbodies in the Adelaide River catchment, and elsewhere. This requires building a comprehensive reference DNA library for target taxa, including fish, molluscs, decapods and turtles: and improving the understanding of factors influencing species-specific detection rates from eDNA in order to optimise sampling design.

There are long-term datasets for several ecological assets within the Adelaide River catchment, but none specifically address the relationship between variation in flow and biodiversity assets or ecological function. There is an urgent need to establish long-term monitoring programs to describe interannual variability in ecological structure and processes in relation to variability in climate drivers.

Much of the information on biodiversity assets and mapping products are derived from surveys conducted several decades ago and may require updating or correction. More information is required on the extent and ecological impacts of invasive pasture grasses.

10. References

Allen, D.C., Larson, J., Murphy, C.A., Garcia, E.A., Anderson, K.E., Busch, M. H., Argerich, A., Belskis, A.M., Higgins, K.T., Penaluna, B.E., Saenz, V., Jones, J. and Whiles, M.R. (2024). Global patterns of allochthony in stream-riparian meta-ecosystems. *Ecology Letters* 27: e14401.

Arthington, A.H., Godfrey, P.C., Pearson, R.G., Karim, F. and Wallace, J. (2014). Biodiversity values of remnant freshwater floodplain lagoons in agricultural catchments: evidence for fish of the Wet Tropics bioregion, northern Australia. *Aquatic Conservation: Marine and Freshwater Ecosystems*

Baird, D. and Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next generation DNA sequencing. *Molecular Ecology* 21: 2039-2044.

Bamford, M., Watkins, D., Bancroft, W., Tischler, G. and Wahl, J. (2008). Migratory Shorebirds of the East Asian - Australasian Flyway: Population Estimates and Internationally Important Sites. Wetlands International - Oceania. Canberra, Australia.

Baumgartner, L.J., Conallin, J., Wooden, I., Campbell, B., Gee, R., Robinson, W.A. and Mallen-Cooper, M. (2014). Using flow guilds of freshwater fish in an adaptive management framework to simplify environmental flow delivery for semi-arid riverine systems. *Fish and Fisheries* 15: 410-427.

Bayliss, P. and Ligtermoet, E. (2017). Seasonal habitats, decadal trends in abundance and cultural values of magpie geese (*Anseranas semipalmata*) on coastal floodplains in the Kakadu Region, northern Australia. *Marine and Freshwater Research*

Bayliss, P. and Yeomans, K.M. (1990). Seasonal distribution and abundance of magpie geese, *Anseranas semipalmata* Latham, in the Northern Territory, and their relation to habitat, 1983-86. *Australian Wildlife Research* 17: 15-38.

Bayliss, P., Saunders, K., Dutra, L.X.C., Melo, L.F.C., Hilton, J., Prakash, M. and Woolard, F. (2018). Assessing sea level-rise risks to coastal floodplains in the Kakadu Region, northern Australia, using a tidally driven hydrodynamic model. *Marine and Freshwater Research* 69: 1064-1078.

Beesley, L.S., Pusey, B.J., Douglas, M.M., Keogh, C.S., Kennard, M.J., Canham, C.A., Close, P.G., Dobbs, R.J. and Setterfield, S.A. (2021). When and where are catfish fat fish? Hydro-ecological determinants of energy reserves in the fork-tailed catfish, *Neoarius graeffei*, in an intermittent tropical river. *Freshwater Biology* 66: 1211-1224.

Berra, T.M. and Wedd, D. (2017). Salinity and spawning of nurseryfish, *Kurtus gulliveri*, in the Adelaide River of northern Australia with notes on electrofishing and photos of a male carrying eggs. *Environmental Biology of Fishes* 100: 959-967.

Brown, G.P. and Shine, R. (2016). Frogs in the spotlight: a 16-year survey of native frogs and invasive toads on a floodplain in tropical Australia. *Ecology and Evolution* 6: 4445-4457.

Buckley, K.A., Crook, D.A., Einoder, L.D., Pillans, R.D., Smith, L.D.G. and Kyne, P.M. (2020). Movement behaviours and survival of largetooth sawfish, *Pristis pristis*, released from a public aquarium. *Aquatic Conservation: Marine and Freshwater Ecosystems* 2020: 1-19.

Bunn, S.E. and Arthington, A.H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. *Environmental Management* 30: 492-507.

Carpenter-Bundhoo, L., Butler, G.L., Bond, N.R., Thiem, J. D., Bunn, S.E. and Kennard, M.J. (2022). Fish movements in response to environmental flow releases in intermittent rivers. *Freshwater Biology* 68: 260-273.

Chatto, R. (2003). The distribution and status of shorebirds around the coast and coastal wetlands of the Northern Territory, Technical Report 73/2003. Parks and Wildlife Commission of the Northern Territory.

Chatto, R. (2006). The distribution and status of waterbirds around the coast and coastal wetlands of the Northern Territory. Technical Report 76/2006. Parks and Wildlife Commission of the Northern Territory.

Chatto. R. (2000). Waterbird breeding colonies in the Top End of the Northern Territory. Technical report 69/2000. Parks and Wildlife Commission of the Northern Territory.

Clancy T.F. and Fukuda, Y. (2024). NT Saltwater Crocodile (*Crocodylus porosus*) Wildlife Trade Management Plan: 2022 Monitoring Report, Northern Territory Department of Environment, Parks and Water Security.

Clancy, T.F. (2018). Aerial survey of Magpie Goose numbers in the Top End of the Northern Territory: Moyle River Floodplains to Arnhem Land Floodplains, April-May 2018. A report to the Department of Environment and Natural Resources. Northern Territory of Australia.

Clancy, T.F. (2019). Aerial survey of Magpie Goose numbers in the Top End of the Northern Territory: Moyle River Floodplains to Arnhem Land Floodplains, May 2019. A report to the Department of Environment and Natural Resources. Northern Territory of Australia.

Clancy, T.F. (2020). Aerial survey of Magpie Goose in the Top End of the Northern Territory: Moyle River Floodplains to Arnhem Land Floodplains, May 2020. Department of Environment and Natural Resources. Northern Territory of Australia.

Clancy, T.F. (2021). Aerial survey of Magpie Goose in the Top End of the Northern Territory: Moyle River Floodplains to Arnhem Land Floodplains, May 2021. Department of Environment, Parks and Water Security. Northern Territory of Australia.

Clancy, T.F. (2022). Aerial survey of Magpie Goose in the Top End of the Northern Territory: Moyle River Floodplains to Arnhem Land Floodplains, May 2022. Department of Environment, Parks and Water Security. Northern Territory of Australia.

Clancy, T.F. (2023). Aerial survey of Magpie Goose in the Top End of the Northern Territory. Moyle River floodplains to Arnhem Land floodplains, May 2023. Department of Environment, Parks & Water Security.

Clarke, K.R. and Gorley, R.N. (2015). PRIMER v7: User Manual/Tutorial. Plymouth, UK: PRIMER-E.

Clarke, K.R., Gorley, R.N., Somerfield, P.J. and Warwick R.M. (2014). 'Change in marine communities: an approach to statistical analysis and interpretation' 3rd edition. (PRIMER-E Ltd,: Plymouth, UK).

Close, P.G., Wallace, J., Bayliss, P., Bartolo, R., Burrows, D., Pusey, B.J., Robinson, C.J., McJannet, D., Karim, F., Byrne, G., Marvanek, S., Turnadge, C., Harrington, G., Petheram, C., Dutra, L.X.C., Dobbs, R., Pettit, N., Jankowski, A., Wallington, T., Kroon, F., Schmidt, D., Buttler, B., Stock, M., Veld, A., Speldewinde, P., Cook, B.A., Cook, B., Douglas, M., Setterfield, S., Kennard, M., Davies, P., Hughes, J., Cossart, R., Conolly, N. and Townsend, S. (2012). Assessment of the likely impacts of development and climate change on aquatic ecological assets in Northern Australia. A report for the National Water Commission, Australia. Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility, Charles Darwin University, Darwin. ISBN: 978-1-921576-66-9. 561 pp.

Colwell. R.K. (2013). EstimateS: Statistical estimation of species richness and shared species from samples. User's guide and application.

Constance, J.M., Garcia, E.A., Pillans, R.D., Udyawer, V. and Kyne, P.M. (2023). A review of the life history and ecology of euryhaline and estuarine sharks and rays. *Fish Biology and Fisheries* 34: 65-89.

Constance, J.M., Garcia, E.A., Yugul Mangi Rangers, Davies, C.L. and Kyne, P.M. (2024). Sharks and rays of northern Australia's Roper River, with a range extension for the threatened Speartooth Shark *Glyphis glyphis*. *Animals* 13: 3306.

Cowie, I.D., Short, P.S. and Osterkamp Madsen, M. (2000). 'Floodplain Flora: A flora of the coastal floodplains of the Northern Territory, Australia'. (Australian Biological Resources Study: Canberra, Australian Capital Territory, Australia).

Crook, D.A., Buckle, D.J., Morrongiello, J.R., Allsop, Q.A., Baldwin, W., Saunders, T.M. and Douglas, M.M. (2019). Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river. *Journal of Animal Ecology* 89: 795-807.

Crook, D.A., Keller, K., Adair, B.J., Luiz, O.J., Waugh, P.S., Schult, J., Dostine, P., Townsend, S.A. and King, A.J. (2021). Use of radiotelemetry to quantify diel habitat preferences and minimum environmental flow requirements of a tropical riverine fish (Sooty grunter *Hephaestus fuliginosus*). *Ecohydrology* 14: e2290.

Crook, D.A., Morrongiello, J.R., King, A.J., Adair, B.J., Grubert, M.A., Roberts, B.H., Douglas, M.M. and Saunders, T.M. (2022). Environmental drivers of recruitment in a tropical fishery: Monsoonal effects and vulnerability to water abstraction. *Ecological Applications* 32.

de Mello, K., dos Santos Junior, E.M., Garcia, E.A., Dostine, P. Waugh, P. Huxley, J., Burcher, J and Richard, A.E. (2024). A multi-index classification approach for wetland mapping between 1986-2022 in the Australian tropical savanna using Google Earth Engine.

Douglas, M.M., Bunn S.E. and Davies P.M. (2005). River and wetland food webs in Australia's wet-dry tropics: general principles and implications for management. *Marine and Freshwater Research* 56: 329-342.

Ferdinands, K., Beggs, K. and Whitehead, P. (2005). Biodiversity and invasive grass species: multiple -use or monoculture? *Wildlife Research* 32: 447-457.

Fogarty, P. (1982). A preliminary survey of environmental damage associated with activity of feral buffalo. Conservation Committee of the Northern Territory.

Frith, H.J. and Davies, D.J.J.F. (1961). Breeding seasons of birds in subcoastal Northern Territory. *The Emu* 61: 97-111.

Fukuda, Y., Saalfeld, K., Webb, G., Manolis, C. and Risk, R. (2013). Standardised method of spotlight surveys for crocodiles in the tidal rivers of the Northern Territory, Australia. *Northern Territory Naturalist* 24: 14-32.

Georges, A. and Thomson, S. (2010). Diversity of Australasian freshwater turtles, with an annotated synonymy and keys to species. *Zootaxa* 2496: 1-37.

Griffiths, A.D. and McKay, J.L. (2007). Cane toads reduce the abundance and site occupancy of Mertens' water monitor (*Varanus mertensi*). *Wildlife Research* 34: 609-615.

Groom, R. and Saalfeld, W.K. (2017). Aerial survey of Magpie Geese in the Top End, Northern Territory. Moyle River floodplains to Murganella Creek floodplains. April 24 – May 6 2017. A report to the Department of Environment and Natural Resources, Palmerston, Northern Territory.

Hammer, M. and Golding, L. (2017). Summary of 2016 freshwater fish field scientific research in the Katherine region, Northern Territory. Report to Kakadu National Park, Northern Land Council and Parks and Wildlife Commission, NT.

Hammer, M.P., Skarlatos Simoes, M.N., Needham. E.W., Wilson, D,N., Barton, M.A. and Lonza, D. (2019). Establishment of Siamese fighting fish on the Adelaide River floodplain: the first serious invasive fish in the Northern Territory, Australia. *Biological Invasions* 21: 2269-2279.

Hammer, M.P., Taillebois, L., King, A.J., Crook, D.A., Wedd, D., Adams, M., Unmack, P.J., Hoese, D.F. and Bertozzi, T. (2021). Unravelling the taxonomy and identification of a problematic group of benthic fishes from tropical rivers (Gobiidae: *Glossogobius*). *Journal of Fish Biology* 99: 87-100.

Hammer, M.P., Whiterod, N.S., Grandjean, R., Tromp, J.J., Horner, S.K. and Austin, C.M. (2024). Rediscovery, systematics and conservation of an enigmatic freshwater crayfish (Parastacidae) from the Australian monsoon tropics. *Aquatic Conservation: Marine and Freshwater Ecosystems* 34: e4172.

Harvey, K.R. and Hill, G.J.E. (2003). Mapping the nesting habitats of saltwater crocodiles (*Crocodylus porosus*) in Melacca Swamp and the Adelaide River wetlands, Northern Territory: an approach using remote sensing and GIS. *Wildlife Research* 30: 365-375.

Huerlimann, R., Cooper, M.K., Edmunds, R.C., Villacorta-Rath, C., Le Port, A., Robson, H.L.A., Strugnell, J.M., Burrows, D. and Jerry, D.R. (2020). Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: an introduction for non-environmental DNA specialists. *Zoological Society of London* 23: 632-645.

Humphries, P., King, A., McCasker, N., Kopf, R. K., Stoffels, R., Zampatti, B. and Price, A. (2020). Riverscape recruitment: A conceptual synthesis of drivers of fish recruitment in rivers. *Canadian Journal of Fisheries* and Aquatic Sciences 77: 213-225.

Humphries, P., King, A.J. and Koehn, J.D. (1999). Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. "When do fishes become juveniles?" pp. 129-151.

Jaensch, R. (1993). Directory of important wetlands in Australia – information sheet. Adelaide River Floodplain System – NT020. Department of Climate Change, Energy, the Environment and Water.

Jaensch, R. (1994). Lake Finniss: an internationally significant site for Little Curlew. Stilt 25: 21.

Jardine, T.D., Bond, N.R., Burford, M.A., Kennard, M.J., Ward, D.P., Bayliss, P., Davies, P.M., Douglas, M.M., Hamilton, S.K., Melack, J.M., Naiman, R.J., Pettit, N.E., Pusey, B.J., Warfe, D.M. and Bunn, S.E. (2015). Does flood rhythm drive ecosystem responses in tropical riverscapes? *Ecology* 96: 684-692.

Jardine, T.D., Pettit, N.E., Warfe, D.M., Pusey, B.J., Ward, D.P., Douglas, M.M., Davies, P.M. and Bunn, S.E. (2012). Consumer-resource coupling in wet-dry tropical rivers. *Journal of Animal Ecology* 81: 310-322.

Jardine, T.D., Pusey, B.J., Hamilton, S.K., Pettit, N.E., Davies, P.M., Douglas, M.M., Sinnamon, V., Halliday, I.A. and Bunn, S.E. (2012). Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river. *Oecologia* 168: 829-838.

Keller, K., Allsop, Q., Brim Box J., Buckle, D., Crook, D.A., Douglas, D.A., Jackson, S., Kennard, M.J., Luiz, O.J., Pusey, B.J., Townsend, S.A. and King, A.J. (2019). Dry season habitat use of fishes in an Australian tropical river. *Scientific Reports* 9: 5677.

King, A.J., Dostine, P.L., Crook, D.A., Keller, K., Schult, J., Waugh, P., Townsend, S., Tyler, K.J., Wedd, D., Roberts, B. and Tjuwaliyn-Wagiman Aboriginal Corporation. (2021). Environmental water needs of the Daly River, Northern Territory. Charles Darwin University, Darwin.

Koehn, J.D., Balcombe, S.R., Baumgartner, L.J., Bice, C.M., Burndred, K., Ellis, I., Koster, W.M., Lintermans, M., Pearce, L., Sharpe, C., Stuart, I. and Todd, C.R. (2020). What is needed to restore native fishes in Australia's Murray-Darling Basin? *Marine and Freshwater Research* 71: 1464-1468.

Komai, T., Gotoh, R.O., Sado, T. and Miya, M. (2019). Development of a new set of PCR primers for eDNA metabarcoding decapod crustaceans. *Metabarcoding and Metagenomics* 3: e33835.

Kyne, P. M., Heupel, M. R., White, W. T. and Simpfendorfer, C. (2021). The Action Plan for Australian Sharks and Rays 2021. National Environmental Research Program Marine Biodiversity Hub.

Kyne, P.M. and Feutry, P. (2017). Recreational fishing impacts on threatened river sharks: a potential conservation issue. *Ecological Management and Restoration* 18: 209-213.

Lintermans, M., Lutz, M., Whiterod, N. S., Gruber, B., Hammer, M. P., Kennard, M. J., Morgan, D. L., Raadik, T. A., Unmack, P., Brooks, S., Ebner, B. C., Gilligan, D., Butler, G. L., Moore, G., Brown, C., Freeman, R., Kerezsy, A., Bice, C. M., Le Feuvre, M. C., *et al.* (2024). Troubled waters in the land down under: Pervasive threats and high extinction risks demand urgent conservation actions to protect Australia's native freshwater fishes. *Biological Conservation* 300: 110843.

Luiz, O.J., Olden, J.D., Kennards, M.J., Crook, D.A., Douglas, M.M., Saunders, T.M., Wedd., D., Adair, B. and King, A.J. (2022). Substantial intraspecific trait variation across a hydrological gradient in northern Australian fishes. *Freshwater Ecology* 13: e4169.

Lynch, D. (1996). Mary River Floodplain Vegetation. Resource Capability Assessment Branch, Department of Lands, Planning and Environment.

Madsen, T. and Shine, R. (2000). Rain, fish and snakes: climatically driven populations dynamics of Arafura filesnakes in tropical Australia. *Oecologia* 124: 208-215.

Madsen, T., Ujvari, B., Shine, R. and Olsson, M. (2006). Rain, rats and pythons: Climate -driven population dynamics of predators and prey in tropical Australia. *Austral Ecology* 31: 30-37.

Messel, H., Gans. C., Wells, A.G. and Green W.J. (1979). Surveys of tidal river systems in the Northern Territory of Australia and their crocodile populations. Monograph 3. The Adelaide, Daly and Moyle Rivers. Pergamon Press.

Midgley, S.H. (1984). The Reynolds River, Finniss River, Adelaide River, McKinley River, Mary River South Alligator River and Karns Creek in the Northern Territory. A biological resource study of freshwaters conducted during August, September 1984. A report for the Northern Territory Fishing Industry Research and Development Trust Fund.

Novak, P.A., Douglas, M.M, Garcia, E.A., Bayliss, P. and Pusey, B.J. (2015). A life-history account of *Macrobrachium spinipes* (Schenkel, 1902) (Cherabin) in a large tropical Australian river. *Freshwater Sciences* 34: 620-633.

Novak, P.A., Garcia, E.A., Pusey, B.J. and Douglas. M.M. (2017). Importance of the natural flow regime to an amphidromous shrimp: a case study. *Marine and Freshwater Research* 68: 909-921.

O'Mara, K., Venarsky, M., Stewart-Koster, B., McGregor, G.B., Schulz, C., Kainz, M., Marshall, J. and Bunn, S.E. (2021). Connectivity of fish communities in a tropical floodplain river system and predicted impacts of potential new dams. *Science of The Total Environment* 788: 147785.

Perna, C.N., Cappo, M., Pusey, B.J., Burrows, D.W. and Pearson, R.G. (2012). Removal of aquatic weeds greatly enhances fish community richness and diversity: an example from the Burdekin River floodplain, tropical Australia. *River Research and Applications* 28: 1093-1104.

Petheram, C., Chilcott, C., Watson, I. and Bruce, C. (eds) (2018) *Water resource assessment for the Darwin catchments*. A report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments. CSIRO, Australia.

Pettit, N.E., Naiman, R.J., Warfe, D.M., Jardine, T.D., Douglas, M.M., Bunn, S.E. and Davies, P.M. (2017). Productivity and connectivity in tropical riverscapes of northern Australia: ecological insights for management. *Ecosystems* 20: 492-514.

Pillans, R.D., Stevens, J.D., Kyne, P.M. and Salini, J. (2010). Observations on the distribution, biology, shortterm movements and habitat requirements of river sharks *Glyphis* spp. In northern Australia. *Endangered Species Research* 10: 321-332.

Pollino, C., Barber, E., Buckworth, R., Deng, A., Ebner, B., Kenyon, R., Liedloff, A., Merrin, L.E., Moeseneder, C., Nielsen, D.L., O'Sullivan, J., Ponce Reyes, R., Robson, B.J., Stratford, D.S., Stewart-Koster, B. and Turschwell, M. (2018). Synthesis of knowledge to support the assessment of impacts of water resource development to ecological assets in northern Australia: asset descriptions. A technical report to the Australian Government from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments.

Price, O. (1998). Conservation of frugivorous birds and monsoon rainforest patches in the Northern Territory. PhD thesis, Australian National University.

Pusey, B.J., Arthington, A.H., Stewart-Koster, B., Kennard, M.J. and Read, M.G. (2010). Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. *Journal of Fish Biology* 77: 731-753.

Pusey, B.J., Douglas, M., Olden, J.D., Jackson, S., Allsop, Q. and Kennard, M.J. (2020). Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wet-dry tropics of northern Australia. *Aquatic Conservation: Marine and Freshwater Ecosystems* 1-15.

Pusey, B.J., Kennard, M.J., Larson, H.K., Allsop, Q., Hammer, M. and Buckle, D.J. (2016). Estuarine fishes of the South Alligator River, Kakadu National Park, northern Australia. *Marine and Freshwater Research* 67: 1797-1812.

Pusey, B.J., Burrows, D.W., Kennard, M.J., Perna, C.N., Unmack, P.J., Allsop, Q., and Hammer, M.P. (2017). Freshwater fishes of northern Australia. *Zootaxa* 4253: 1-104.

Richards, S.J., Alford, R.A. and Bradfield, K.S. (2006). The great frog decline in Australasia: causes, developments and conservation. In 'Evolution and Biogeography of Australasian Vertebrates'. (Eds J.R. Merrick, M. Archer, G. Hickie, M. Lee.) pp.241-252. (Australian Scientific Publishers: Sydney, Australia).

Roberts, B.H., Morrongiello, J.R., Morgan, D.L., King, A.J., Saunders, T.M., Banks, S.C. and Crook, D.A. (2023). Monsoonal wet season influences the migration tendency of a catadromous fish (barramundi *Lates calcarifer*). *Journal of Animal Ecology* 93: 83-94.

Robins, J., Mayer, D., Staunton-Smith, J., Halliday, I., Sawynok, B. and Sellin, M. (2006). Variable growth rates of the tropical estuarine fish barramundi *Lates calcarifer* (Bloch) under different freshwater flow conditions. *Journal of Fish Biology* 69: 379-391.

Rognes, T., Flouri, T., Nichols, B., Quince, C. and Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. *Peer J* e2584.

Saalfeld, W.K. (2011). Aerial survey of Magpie Geese in the Darwin to Kakadu region of the Top End, Northern Territory. 31 May 2011 to 5 June 2011. A report to the Department of Natural Resources, Environment, the Arts and Sport. Saalfeld, W.K. (2013). Aerial survey of Magpie Geese in the Adelaide River floodplain to Murganella floodplain region of the Top End, Northern Territory. 18 April 2013 to 24 April 2013.

Saalfeld, W.K. (2014). Aerial survey of Magpie Geese in the Top End, Northern Territory. Moyle River floodplains to Murganella Creek floodplains. 31 March 2014 to 4 April 2014 and 13 May 2014 to 19 May 2014. A report to the Department of Land Resource Management, Darwin, Northern Territory.

Saalfeld, W.K. (2015). Aerial survey of Magpie Geese in the Top End, Northern Territory. Moyle River floodplains to Murganella Creek floodplains. 5 May 2015 to 16 May 2015. Flora and Fauna Division, Department of Land Resource Management, Palmerston, Northern Territory.

Saalfeld, W.K. (2016). Aerial survey of Magpie Geese in the Top End, Northern Territory. Moyle River floodplains to Murganella Creek floodplains. 3 May 2016 to 22 May 2016. A report to the Department of Land Resource Management, Darwin, Northern Territory.

Sharpe, C. P. (2011). Spawning and recruitment ecology of golden perch (*Macquaria ambigua* Richardson 1845) in the Murray and Darling Rivers. PhD thesis. Griffith University.

Shine, R. and Madsen, T. (1997). Prey abundance and predator reproduction: rats and pythons on a tropical Australian floodplain. *Ecology* 78: 1078-1086.

Story, R. (1969). Vegetation of the Adelaide-Alligator Area. In 'Lands of the Adelaide-Alligator Area, Northern Territory.' Australian Land Research Series 25. pp. 114-130. CSIRO, Melbourne.

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. and Waller, R.W. (2004). Status and trends in amphibian declines and extinctions worldwide. *Science* 306: 1783-1786.

Udyawer, V., Thums, M., Ferreira, L.C., Tulloch, V. and Kyne, P.M. (2021). Distribution and Habitat Suitability of Threatened and Migratory Marine Species in Northern Australia. National Environmental Research Program Marine Biodiversity Hub.

Ujvari, B., Brown, G., Shine, R. and Madsen, T. (2016). Floods and famine: climate-induced collapse of a tropical predator-prey community. *Functional Ecology* 30: 453-458.

Vertessy, R.A. (1990). Morphodynamics of macrotidal rivers in far northern Australia. (PhD thesis). Australian National University, Australia.

Welch, M. (2024). Aerial survey of Magpie Goose in the Top End of the Northern Territory. Moyle River to Arnhem Land Floodplains April 2024. Department of Lands, Planning and Environment.

Whitehead, P.J. and Saalfeld, K. (2000). Nesting phenology of Magpie Geese (*Anseranas semipalmata*) in monsoonal northern Australia: responses to antecedent rainfall. *Journal of Zoology* 251: 495-508.

Wilson, B.A., Brocklehurst, P.S. and Whitehead, P.J. (1991). Classification, distribution and environmental relationships of coastal floodplain vegetation, Northern Territory, Australia. Technical Memorandum 91/2.

Woinarski, J.C.Z. (1993). The status of herpetofauna and herpetology in the Northern Territory. In 'Herpetology in Australia: A Diverse Discipline'. (Eds D. Lunney, D. Ayers.) pp. 81-107. (Surry Beatty and Sons: Sydney, Australia).

11. Appendices

11.1. Appendix 1 – Site summaries

Site DLDD – Dash Lagoon

:	Site	Wate	er quality	Habitat	
code	DLDD	EC	29.7 μS/cm	off-stream channel	class 3.1
latitude	-13.0445	DO	7.3 mg/L	max. depth	5.8 m
longitude	131.2364	% DO	87.2	channel width	48 m
date	5/8/2024	TN	0.38 mg/L	% open water	100
		TP	0.01 mg/L	% macrophyte cover	0
		Chlorophyll a	4.21 μg/L		
		Turbidity	3.5 NTU		
		pН	7.22		

Fish species (n=16)					
Ambassis macleayi	Glossamia aprion	Megalops cyprinoides	Oxyeleotris lineolata		
Ambassis sp. NW	Lates calcarifer	Melanotaenia splendida	Oxyeleotris selheimi		
Amniataba percoides	Scleropages jardinii	Nematalosa erebi	Syncomistes butleri		
Craterocephalus stercusmuscarum	Strongylura krefftii	Neoarius leptaspis	Toxotes chatareus		

Reptile species (n=2)	Decapod species (n=2)
Crocodylus porosus	Macrobrachium spinipes
Elseya flaviventralis	Macrobrachium bullatum

Site ARDD - Adelaide River, Dot and Dash

Site		Water	quality	Habitat		
code	ARDD	EC	247.4 μS/cm	pool in river channel	class 2.2	
latitude	-13.0893	DO	4.7 mg/L	max. depth	5.1 m	
longitude	131.2345	%DO	56.7 %	channel width	22 m	
river	Adelaide River	TN	0.21 mg/L	% open water	100	
property	NT Land Corporation	TP	0.01 mg/L	% macrophyte	0	
date	6/8/2024	Chlorophyll a	1.68 μg/L			
		Turbidity	3.0 NTU			
		pН	7.45			

Fish species (n=14)						
Ambassis macleayi	Melanotaenia splendida	Oxyeleotris lineolata	Toxotes chatareus			
Amniataba percoides	Nematalosa erebi	Planiliza ordensis	Glossamia aprion			
Lates calcarifer	Neoarius graeffei	Strongylura krefftii				
Megalops cyprinoides	Neosilurus ater	Syncomistes butleri				

Decapod species (n=6)			
Caridina magnovus	Caridina wilsoni		
Caridina nilotica	Macrobrachium bullatum		
Caridina wilkinsi	Macrobrachium spinipes		

Site AULD - Auld's Lagoon

Site		Water	quality	Habitat		
code	AULD	EC	51.2 S/cm	off-stream channel	class 3.3	
latitude	-12.7429	DO	3.2 mg/L	max. depth	2.9 m	
longitude	131.2221	%DO	40.3 %	channel width	65 m	
river		TN	0.43 mg/L	% open water	40	
property	Donald's Lagoon	TP	0.025 mg/L	% macrophyte	60	
date	7/08/2024	Chlorophyll a	5.31 μg/L			
		Turbidity	7.3 NTU			
		pН	6.7			

Fish species (n=22)					
Ambassis macleayi	Megalops cyprinoides	Oxyeleotris nullipora	Toxotes lorentzi		
Ambassis sp. NW	Melanotaenia splendida	Oxyeleotris selheimi	Mogurnda mogurnda		
Craterocephalus stercusmuscarum	Nematalosa erebi	Planiliza ordensis	Strongylura krefftii		
Denariusa bandata	Neosilurus ater	Porochilus rendahli	Amniataba percoides		
Glossamia aprion	Neosilurus hyrtlii	Scleropages jardinii			
Leiopotherapon unicolor	Oxyeleotris lineolata	Toxotes chatareus			

Decapod species (n=4)	Reptile species (n=1)
Caridina nilotica	Emydura tanybaraga
Caridina wilkinsi	
Caridina wilsoni	
Macrobrachium bullatum	

Site DNLG - Donald's Lagoon

	Site	Water quality		Habitat	
code	DNLG	EC	56.4 μS/cm	off-stream channel	class 3.3
latitude	-12.7342	DO	5.9 mg/L	max. depth	1.9 m
longitude	131.2401	%DO	72.9 %	channel width	138 m
river		TN	0.76 mg/L	% open water	30
property	Donald's Lagoon	ТР	0.055 mg/L	% macrophyte	70
date	8/8/2024	Chlorophyll a	11.26 μg/L		
		Turbidity	13.6 NTU		
		pН	6.86		

Fish species (n=18)					
Ambassis macleayi	Lates calcarifer	Nematalosa erebi	Strongylura krefftii		
Amniataba percoides	Leiopotherapon unicolor	Neoarius leptaspis	Toxotes chatareus		
Craterocephalus stercusmuscarum	Megalops cyprinoides	Neosilurus hyrtlii	Toxotes lorentzi		
Glossamia aprion	Melanotaenia splendida	Porochilus rendahli			
Oxyeleotris selheimi	Planiliza ordensis	Scleropages jardinii			

Decapod species (n=3)	Reptile species (n=1)
Caridina wilkinsi	Emydura tanybaraga
Macrobrachium bullatum	
Macrobrachium spinipes	

Site AR03 - Adelaide River site 3

Si	te	Water	Water Quality Hab		
code	AR03	EC	40.3 μS/cm	off-stream channel	class 3.2
latitude	-12.8976	DO	4.7 mg/L	max. depth	6 m
longitude	131.2119	DO	57 %	channel width	83 m
river		TN	0.35 mg/L	% open water	80
property	Koolpinyah	ТР	0.015 mg/L	% macrophyte	20
date	9/8/2024	Chlorophyll a	4.43 μg/L		
		Turbidity	1.8 NTU		
		pН	6.64		

Fish species (n=16)					
Ambassis macleayi	Glossamia aprion	Melanotaenia splendida	Oxyeleotris selheimi		
Amniataba percoides	Lates calcarifer	Nematalosa erebi	Oxyeleotris nullipora		
Craterocephalus stercusmuscarum	Megalops cyprinoides	Neosilurus ater	Scleropages jardinii		
Denariusa bandata	Melanotaenia nigrans	Oxyeleotris lineolata	Strongylura krefftii		

Decapod species (n=4)	Reptile species (n=2)
Caridina wilkinsi	Crocodylus porosus
Caridina wilsoni	Varanus mertensi
Cherax quadricarinatus	
Macrobrachium bullatum	

Si	Site Water quality		quality	Habitat	
code	МКВВ	EC	48.8 μS/cm	off-stream channel	class 3.1
latitude	-13.1056	DO	4.4 mg/L	max. depth	6 m
longitude	131.2363	%DO	53.1	channel width	42 m
river		TN	1.06 mg/L	% open water	100
property		ТР	0.035 mg/L	% macrophyte	0
date	10/8/2024	Chlorophyll a	19.86 μg/L		
		Turbidity	5.6 NTU		
		pH	6.69		

Fish species (n=12)				
Ambassis macleayi	Craterocephalus stercusmuscarum	Nematalosa erebi	Planiliza ordensis	
Ambassis sp. NW	Glossamia aprion	Oxyeleotris lineolata	Scleropages jardinii	
Amniataba percoides	Melanotaenia splendida	Oxyeleotris selheimi	Toxotes chatareus	

Decapod species (n=3)	Reptile species (n=1)
Caridina magnovus	Elseya flaviventralis
Caridina wilkinsi	
Macrobrachium bullatum	

Site MKXG – Marrakai Crossing

Si	Site Water quality		Hat	Habitat	
code	MKXG	EC	260.0 μS/cm	stream riffle	class 1
latitude	-12.9273	DO	6.0 mg/L	max. depth	no data
longitude	131.2659	%DO	69.4 mg/L	channel width	18 m
river	Adelaide River	TN	0.17 mg/L	% open water	100
property		ТР	0.005 mg/L	% macrophyte	0
date	12/8/2024	Chlorophyll a	3.09 μg/L		
		Turbidity	3.1 NTU		
		pН	7.32		

Fish species (n=17)					
Amniataba percoides	Hephaestus fuliginosus	Mogurnda mogurnda	Planiliza ordensis		
Craterocephalus stercusmuscarum	Hypseleotris compressa	Nematalosa erebi	Toxotes chatareus		
Glossamia aprion	Leiopotherapon unicolor	Neosilurus ater			
Glossogobius aureus	Leptachirus darwinensis	Ophisternon gutturale			
Glossogobius munroi	Melanotaenia splendida	Oxyeleotris lineolata			

Decapod species (n=4)	Reptile species (n=1)
Caridina magnovus	Chelodina rugosa
Caridina nilotica	
Cherax quadricarinatus	
Macrobrachium spinipes	

Site ARBR - Adelaide River Bridge Riffle

Si	te	Water quality		Habitat	
code	ARBR	EC	279.2 μS/cm	stream riffle	class 1
latitude	-13.2401	DO	7.7 mg/L	max. depth	no data
longitude	131.1079	%DO	92.4 %	channel width	no data
river	Adelaide	TN	0.19 mg/L	% open water	no data
property		ТР	0.02 mg/L	% macrophyte	no data
date	12/8/2024	Chlorophyll a	1.3 μg/L		
		Turbidity	2.1 NTU		
		pН	7.84		

Fish species (n=12)			
Amniataba percoides	Hephaestus fuliginosus	Melanotaenia splendida	Planiliza ordensis
Craterocephalus stercusmuscarum	Leiopotherapon unicolor	Mogurnda mogurnda	Strongylura krefftii
Glossogobius munroi	Megalops cyprinoides	Oxyeleotris lineolata	Syncomistes butleri

Decapod species (n=4)	
Caridina magnovus	Macrobrachium bullatum
Cherax quadricarinatus	Macrobrachium spinipes

Site STRD – Strickland Road

	Site	Water quality		Habitat	
code	Strickland Road	EC	271.5 μS/cm	pool in river channel	class 2.2
latitude	-13.2055	DO	5.7 mg/L	max. depth	3 m
longitude	131.1539	%DO	68.4 %	channel width	39 m
river	Adelaide	TN	0.18 mg/L	% open water	100
property		TP	0.01 mg/L	% macrophyte	0
date	13/8/2024	Chlorophyll a	3.15 μg/L		
		Turbidity	9.6 NTU		
		pН	7.42		

Fish species (n=19)			
Ambassis macleayi	Glossogobius munroi	Nematalosa erebi	Planiliza ordensis
Amniataba percoides	Hephaestus fuliginosus	Neoarius graeffei	Strongylura krefftii
Anodontiglanis dahli	Lates calcarifer	Neoarius leptaspis	Toxotes chatareus
Craterocephalus stercusmuscarum	Megalops cyprinoides	Oxyeleotris lineolata	Toxotes lorentzi
Glossamia aprion	Melanotaenia spendida	Oxyeleotris selheimi	

Decapod species (n=3)	Reptile species (n=2)
Caridina magnovus	Crocodylus porosus
Caridina wilsoni	Emydura tanybaraga
Macrobrachium bullatum	

Site KSCK – Kaissis Creek

Si	Site Water		quality Habitat		
code	KSCK	EC	330.1 μS/cm	tidal freshwater	class 6
latitude	-12.792	DO	7.9 mg/L	max. depth	3.6 m
longitude	131.2315	%DO	96.7 %	channel width	30 m
river	Kaissis Creek	TN	0.24 mg/L	% open water	100
property		ТР	0.035 mg/L	% macrophyte	0
date	14/8/2024	Chlorophyll a	20.4 μg/L		
		Turbidity	90.2 NTU		
		pН	7.87		

Fish species (n=11)			
Ambassis interrupta	Glossamia aprion	Leptachirus darwinensis	Thryssa malabarica
Butis butis	Kurtus gulliveri	Periophthalmus weberi	Toxotes chatareus
Carcharhinus leucas	Lates calcarifer	Planiliza ordensis	

Decapod species (n=3)	Reptile species (n=3)
Caridina nilotica	Acrochordus arafurae
Macrobrachium bullatum	Crocodylus porosus
Macrobrachium sp.	Emydura tanybaraga
Site BTCK - Beatrice Creek

Site		Water quality		Habitat	
code	BTCK	EC	495.1 μS/cm	tidal freshwater	class 6
latitude	-12.7554	DO	7.5 mg/L	max. depth	2 m
longitude	131.2845	%DO	92.2 %	channel width	30 m
river	Beatrice Creek	TN	0.46 mg/L	% open water	100
property		ТР	0.1 mg/L	% macrophyte	0
date	15/8/2024	Chlorophyll a	6.56 μg/L		
		Turbidity	211.5 NTU		
		pН	7.69		

Fish species (n=13)			
Ambassis interrupta	Hemiarius dioctes	Neoarius leptaspis	Zenarchopterus caudovittatus
Caragobius urolepis	Kurtus gulliveri	Planiliza ordensis	
Carcharhinus leucas	Lates calcarifer	Thyssa brevicauda	
Glossogobius munroi	Leptachirus darwinensis	Toxotes chatareus	

Reptile species (n=1) Crocodylus porosus

Site MRJN – Margaret River junction

Site		Water quality		Habitat	
code	MRJN	EC	273.4 μS/cm	tidal freshwater	class 6
latitude	-12.9172	DO	4.9 mg/L	max. depth	no data
longitude	131.2594	%DO	59.1 %	channel width	34 m
river	Adelaide	TN	0.17 mg/L	% open water	no data
property		ТР	0.01 mg/L	% macrophyte	no data
date	16/8/2024	Chlorophyll a	4.44 μg/L		
		Turbidity	5.6 NTU		
		pН	7.6		

Fish species (n=13)					
Glossamia aprion	Nematalosa erebi	Oxyeleotris lineolata	Toxotes chatareus		
Lates calcarifer	Neoarius graeffei	Planiliza ordensis			
Megalops cyprinoides	Neoarius leptaspis	Strongylura krefftii			
Melanotaenia splendida	Neosilurus ater	Syncomistes butleri			

Decapod species (n=3)	Reptile species (n=3)
Caridina nilotica	Crocodylus johnstoni
Caridina wilsoni	Elseya flaviventralis
Macrobrachium spinipes	Emydura tanybaraga

Site DDRF - Dot and Dash Riffle

Site		Water quality		Habitat	
code	DDRF	EC	248 μS/cm	stream riffle	class 1
latitude	-13.0489	DO	5.4 mg/L	max. depth	no data
longitude	131.2485	%DO	64.5	channel width	14 m
river	Adelaide	TN	0.18 mg/L	% open water	100
property		ТР	0.005 mg/L	% macrophyte	0
date	17/8/2024	Chlorophyll a	2.49 μg/L		
		Turbidity	2.8 NTU		
		pН	7.49		

Fish species (n=16)					
Amniataba percoides	Hephaestus fuliginosus	Mogurnda mogurnda	Oxyeleotris lineolata		
Glossamia aprion	Leiopotherapon unicolor	Nematalosa erebi	Prionobutis microps		
Glossogobius aureus	Megalops cyprinoides	Neosilurus hyrtlii	Syncomistes butleri		
Glossogobius munroi	Melanotaenia splendida	Ophisternon gutturale	Toxotes chatareus		

Decapod species (n=6)	
Caridina magnovus	Cherax quadricarinatus
Caridina nilotica	Macrobrachium bullatum
Caridina wilsoni	Macrobrachium spinipes

Site AGLN – Acacia Gap Lagoon

Site		Water quality		Habitat	
code	AGLN	EC	148.6 μS/cm	riverine lagoon	class 4
latitude	-12.8026	DO	5.3 mg/L	max. depth	5.4 m
longitude	131.2	%DO	65.9 %	channel width	67 m
river	Manton	TN	0.18 mg/L	% open water	no data
date	19/8/2024	ТР	0.01 mg/L	% macrophyte	no data
		Chlorophyll a	3.5 μg/L		
		Turbidity	2.0 NTU		
		pН	7.19		

Fish species (n=25)			
Ambassis macleayi	Lates calcarifer	Neoarius leptaspis	Strongylura krefftii
Amniataba percoides	Megalops cyprinoides	Neosilurus ater	Syncomistes butleri
Craterocephalus stercusmuscarum	Melanotaenia nigrans	Oxyeleotris lineolata	Toxotes chatareus
Denariusa bandata	Melanotaenia splendida	Oxyeleotris nullipora	Toxotes lorentzi
Glossamia aprion	Mogurnda mogurnda	Oxyeleotris selhemi	
Hephaestus fuliginosus	Nematalosa erebi	Planiliza ordensis	
Hypseleotris compressa	Neoarius graeffei	Scleropages jardinii	

Decapod species (n=5)	Reptile species (n=2)
Caridina magnovus	Crocodylus porosus
Caridina nilotica	Elseya flaviventralis
Caridina wilsoni	
Macrobrachium bullatum	
Macrobrachium spinipes	

Site AR01 - Adelaide River site 1

Site		Water quality		Habitat	
code	AR01	EC	51 μS/cm	off-stream channel	class 3.2
latitude	-12.8491	DO	6.1 mg/L	max. depth	3.4 m
longitude	131.2033	%DO	76.1 %	channel width	64 m
river		TN	0.38 mg/L	% open water	95
property		ТР	0.015 mg/L	% macrophyte	10
date	20/8/2024	Chlorophyll a	4.57 μg/L		
		Turbidity	1.4 NTU		
		pН	7.27		

Fish species (n=21)					
Ambassis macleayi	Leiopotherapon unicolor	Neosilurus ater	Strongylura krefftii		
Amniataba percoides	Megalops cyprinoides	Oxyeleotris lineolata	Toxotes chatareus		
Craterocephalus stercusmuscarum	Melanotaenia nigrans	Oxyeleotris selheimi	Toxotes lorentzi		
Denariusa bandata	Melanotaenia splendida	Planiliza ordensis			
Glossamia aprion	Mogurnda mogurnda	Porochilus rendahli			
Lates calcarifer	Nematalosa erebi	Scleropages jardinii			

Decapod species (n=4)	Reptile species (n=1)
Caridina wilkinsi	Emydura tanybaraga
Macrobrachium bullatum	
Macrobrachium spinipes	
Cherax quadricarinatus	

Site BHRF - Beatrice Hill Research Farm

	Site	Water	quality	Habitat	
code	BHRF	EC	176.7 μS/cm	floodplain channel	class 5
latitude	-12.638	DO	1 mg/L	max. depth	1 m
longitude	131.3102	%DO	13.2 %	channel width	no data
river		TN	1.04 mg/L	% open water	85
property	Beatrice Hill Research Farm	ТР	0.105 mg/L	% macrophyte	15
date	21/8/2024	Chlorophyll a	24.93 μg/L		
		Turbidity	241.3 NTU		
		pН	5.87		

Fish species (n=13)					
Ambassis sp. NW	Melanotaenia splendida	Ophisternon gutturale	Toxotes lorentzi		
Glossamia aprion	Mogurnda mogurnda	Oxyeleotris selheimi			
Leiopotherapon unicolor	Neosilurus ater	Porochilus rendahli			
Megalops cyprinoides	Neosilurus hyrtlii	Scleropages jardinii			

Reptile species (n=1)

Crocodylus porosus

Site CMCK – Coomalie Creek

	Site	Water quality		Habitat	
code	СМСК	EC	424.7 μS/cm	pool in river channel	class 2.1
latitude	-13.0133	DO	4.8 mg/L	max. depth	5.3 m
longitude	131.121	%DO	58.4 %	channel width	no data
river	Coomalie Creek	TN	0.25 mg/L	% open water	100
property		TP	0.035 mg/L	% macrophyte	0
date	22/8/2024	Chlorophyll a	11.9 μg/L		
		Turbidity	6.1 NTU		
		pН	7.52		

Fish species (n=12)					
Ambassis macleayi	Lates calcarifer	Nematalosa erebi	Scleropages jardinii		
Amniataba percoides	Megalops cyprinoides	Oxyeleotris lineolata	Strongylura krefftii		
Glossamia aprion	Melanotaenia splendida	Planiliza ordensis	Toxotes chatareus		

Decapod species (n=4)	
Caridina magnovus	Caridina wilsoni
Caridina wilkinsi	Macrobrachium bullatum

Site DRRD - Daly River Road Crossing

Site	9	Water q	uality	Habitat	
code	DRRD	EC	78.1 μS/cm	pool in river channel	class 2.1
latitude	-13.4824	DO	5.4 mg/L	max. depth	3.8 m
longitude	131.0974	%DO	67.9 %	channel width	no data
river	Adelaide	TN	0.03 mg/L	% open water	90
property		ТР	0.005 mg/L	% macrophyte	10
date	23/8/2024	Chlorophyll a	0.45 μg/L		
		Turbidity	2.8 NTU		
		pН	6.64		

Fish species (n=11)					
Ambassis macleayi	Glossamia aprion	Melanotaenia splendida	Neoarius graeffei		
Amniataba percoides	Hephaestus fuliginosus	Mogurnda mogurnda	Oxyeleotris lineolata		
Craterocephalus stercusmuscarum	Lates calcarifer	Nematalosa erebi			

Decapod species (n=4)	
Caridina nilotica	Macrobrachium bullatum
Caridina wilkinsi	Macrobrachium spinipes

11.2. Appendix 2 - List of aquatic species

Phylum	Class	Order	Family	Species
Arthropoda	Malacostraca	Decapoda	Atyidae	Caridina magnovus
Arthropoda	Malacostraca	Decapoda	Atyidae	Caridina nilotica
Arthropoda	Malacostraca	Decapoda	Atyidae	Caridina wilkinsi
Arthropoda	Malacostraca	Decapoda	Atyidae	Caridina wilsoni
Arthropoda	Malacostraca	Decapoda	Palaemonidae	Macrobrachium bullatum
Arthropoda	Malacostraca	Decapoda	Palaemonidae	Macrobrachium sp.
Arthropoda	Malacostraca	Decapoda	Palaemonidae	Macrobrachium spinipes
Arthropoda	Malacostraca	Decapoda	Parastacidae	Cherax quadricarinatus
Chordata	Actinopterygii	Perciformes	Ambassidae	Ambassis interrupta
Chordata	Actinopterygii	Perciformes	Ambassidae	Ambassis macleayi
Chordata	Actinopterygii	Perciformes	Ambassidae	Ambassis sp. NW
Chordata	Actinopterygii	Perciformes	Ambassidae	Denariusa bandata
Chordata	Actinopterygii	Perciformes	Apogonidae	Glossamia aprion
Chordata	Actinopterygii	Perciformes	Ariidae	Hemiarius dioctes
Chordata	Actinopterygii	Perciformes	Ariidae	Neoarius graeffei
Chordata	Actinopterygii	Perciformes	Ariidae	Neoarius leptaspis
Chordata	Actinopterygii	Perciformes	Atherinidae	Craterocephalus stercusmuscarum
Chordata	Actinopterygii	Perciformes	Belonidae	Strongylura krefftii
Chordata	Actinopterygii	Perciformes	Clupeidae	Nematalosa erebi
Chordata	Actinopterygii	Perciformes	Eleotridae	Butis butis
Chordata	Actinopterygii	Perciformes	Eleotridae	Hypseleotris compressa
Chordata	Actinopterygii	Perciformes	Eleotridae	Mogurnda mogurnda
Chordata	Actinopterygii	Perciformes	Eleotridae	Oxyeleotris lineolata
Chordata	Actinopterygii	Perciformes	Eleotridae	Oxyeleotris nullipora
Chordata	Actinopterygii	Perciformes	Eleotridae	Oxyeleotris selheimi
Chordata	Actinopterygii	Perciformes	Eleotridae	Prionobutis microps
Chordata	Actinopterygii	Perciformes	Engraulidae	Thryssa brevicauda
Chordata	Actinopterygii	Perciformes	Engraulidae	Thryssa malabarica
Chordata	Actinopterygii	Perciformes	Gobiidae	Caragobius rubristriatus
Chordata	Actinopterygii	Perciformes	Gobiidae	Glossogobius aureus
Chordata	Actinopterygii	Perciformes	Gobiidae	Glossogobius munroi
Chordata	Actinopterygii	Perciformes	Gobiidae	Periophthalmus weberi
Chordata	Actinopterygii	Perciformes	Kurtidae	Kurtus gulliveri
Chordata	Actinopterygii	Perciformes	Latidae	Lates calcarifer
Chordata	Actinopterygii	Perciformes	Megalopidae	Megalops cyprinoides
Chordata	Actinopterygii	Perciformes	Melanotaeniidae	Melanotaenia nigrans
Chordata	Actinopterygii	Perciformes	Melanotaeniidae	Melanotaenia splendida
Chordata	Actinopterygii	Perciformes	Mugilidae	Planiliza ordensis
Chordata	Actinopterygii	Perciformes	Osteoglossidae	Scleropages jardinii

Ecological assessment of the Adelaide River catchment

Phylum	Class	Order	Family	Species
Chordata	Actinopterygii	Perciformes	Plotosidae	Anodontiglanis dahli
Chordata	Actinopterygii	Perciformes	Plotosidae	Neosilurus ater
Chordata	Actinopterygii	Perciformes	Plotosidae	Neosilurus hyrtlii
Chordata	Actinopterygii	Perciformes	Plotosidae	Porochilus rendahli
Chordata	Actinopterygii	Perciformes	Soleidae	Leptachirus darwinensis
Chordata	Actinopterygii	Perciformes	Synbranchidae	Ophisternon gutturale
Chordata	Actinopterygii	Perciformes	Terapontidae	Amniataba percoides
Chordata	Actinopterygii	Perciformes	Terapontidae	Hephaestus fuliginosus
Chordata	Actinopterygii	Perciformes	Terapontidae	Leiopotherapon unicolor
Chordata	Actinopterygii	Perciformes	Terapontidae	Syncomistes butleri
Chordata	Actinopterygii	Perciformes	Toxotidae	Toxotes chatareus
Chordata	Actinopterygii	Perciformes	Toxotidae	Toxotes lorentzi
Chordata	Actinopterygii	Perciformes	Zenarchopteridae	Zenarchopterus caudovittatus
Chordata	Chondrichthyes	Carcharhiniformes	Carcharhinidae	Carcharhinus leucas
Chordata	Reptilia	Crocodylia	Crocodylidae	Crocodylus johnstoni
Chordata	Reptilia	Crocodylia	Crocodylidae	Crocodylus porosus
Chordata	Reptilia	Squamata	Acrochordidae	Acrochordus arafurae
Chordata	Reptilia	Squamata	Varanidae	Varanus mertensi
Chordata	Reptilia	Testudines	Chelidae	Chelodina rugosa
Chordata	Reptilia	Testudines	Chelidae	Elseya flaviventralis
Chordata	Reptilia	Testudines	Chelidae	Emydura tanybaraga

11.3. Appendix 3 – Occurrence of aquatic species by site

Species	ARBR	DDRF	MKXG	CMCK	DRRD	STRD	ARDD	MKBB	DLDD	AR03	AR01	AULD	DNLG	AGLN	BHRF	MRJN	KSCK	втск
DECAPODA																		
Caridina magnovus	1	1	1	1		1	1	1						1				
Caridina nilotica		1	1		1		1					1		1		1	1	
Caridina wilkinsi				1	1		1	1		1	1	1	1					
Caridina wilsoni		1		1		1	1			1		1		1		1		
Cherax quadricarinatus	1	1	1							1	1							
Macrobrachium bullatum	1	1		1	1	1	1	1	1	1	1	1	1	1			1	
Macrobrachium sp.																	1	
Macrobrachium spinipes	1	1	1		1		1		1		1		1	1		1		
FISH																		
Ambassis interrupta																	1	1
Ambassis macleayi				1	1	1	1	1	1	1	1	1	1	1				
Ambassis sp. NW								1	1			1			1			
Amniataba percoides	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
Anodontiglanis dahli						1												
Butis butis																	1	
Caragobius rubristriatus																		1
Carcharhinus leucas																	1	1
Craterocephalus stercusmuscarum	1		1		1	1		1	1	1	1	1	1	1				
Denariusa bandata										1	1	1		1				
Glossamia aprion		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Glossogobius aureus		1	1															
Glossogobius munroi	1	1	1			1												1

Ecological assessment of the Adelaide River catchment

Species	ARBR	DDRF	DXXM	CMCK	DRRD	STRD	ARDD	MKBB	DLDD	AR03	AR01	AULD	DNLG	AGLN	BHRF	MRJN	KSCK	BTCK
Hemiarius dioctes																		1
Hephaestus fuliginosus	1	1	1		1	1								1				
Hypseleotris compressa			1											1				
Kurtus gulliveri																	1	1
Lates calcarifer				1	1	1	1		1	1	1		1	1		1	1	1
Leiopotherapon unicolor	1	1	1								1	1	1		1			
Leptachirus darwinensis			1														1	1
Megalops cyprinoides	1	1		1		1	1		1	1	1	1	1	1	1	1		
Melanotaenia nigrans										1	1			1				
Melanotaenia splendida	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Mogurnda mogurnda	1	1	1		1						1	1		1	1			
Nematalosa erebi		1	1	1	1	1	1	1	1	1	1	1	1	1		1		
Neoarius graeffei					1	1	1							1		1		
Neoarius leptaspis						1			1				1	1		1		1
Neosilurus ater			1				1			1	1	1		1	1	1		
Neosilurus hyrtlii		1										1	1		1			
Ophisternon gutturale		1	1												1			
Oxyeleotris lineolata	1	1	1	1	1	1	1	1	1	1	1	1		1		1		
Oxyeleotris nullipora										1		1		1				
Oxyeleotris selheimi						1		1	1	1	1	1	1	1	1			
Periophthalmus weberi																	1	
Planiliza ordensis	1		1	1		1	1	1			1	1	1	1		1	1	1
Porochilus rendahli											1	1	1		1			
Prionobutis microps		1																
Scleropages jardinii				1				1	1	1	1	1	1	1	1			

Ecological assessment of the Adelaide River catchment

Species	ARBR	DDRF	JKXG	CMCK	ORRD	STRD	ARDD	ИКВВ	DDD	AR03	AR01	AULD	DNLG	VGLN	3HRF	MRJN	KSCK	BTCK
Strongylura krofftii	1		~	1		1	1	~	1	1	1	1	1	1		1		
	1			1		1	1		1	Ŧ	1	1	1	1		1		
Syncomistes butleri	1	1					1		1					1		1		
Thryssa brevicauda																		1
Thryssa malabarica																	1	
Toxotes chatareus		1	1	1		1	1	1	1		1	1	1	1		1	1	1
Toxotes lorentzi						1					1	1	1	1	1			
Zenarchopterus caudovittatus																		1
REPTILES																		
Acrochordus arafurae																	1	
Chelodina rugosa			1															
Crocodylus johnstoni																1		
Crocodylus porosus						1			1	1				1	1		1	1
Elseya flaviventralis								1	1					1		1		
Emydura tanybaraga						1					1	1	1			1	1	
Varanus mertensi										1								